w3resource

SQL Exercises, Practice, Solution - SUBQUERIES


SQL SUBQUERIES [39 exercises with solution]


You may read our SQL Subqueries tutorial before solving the following exercises.

[An editor is available at the bottom of the page to write and execute the scripts. Go to the editor]

1. From the following tables, write a SQL query to find all the orders issued by the salesman 'Paul Adam'. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

2. From the following tables write a SQL query to find all orders generated by London-based salespeople. Return ord_no, purch_amt, ord_date, customer_id, salesman_id.

Sample table: Salesman
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table: Orders

Click me to see the solution

3. From the following tables write a SQL query to find all orders generated by the salespeople who may work for customers whose id is 3007. Return ord_no, purch_amt, ord_date, customer_id, salesman_id.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

4. From the following tables write a SQL query to find the order values greater than the average order value of 10th October 2012. Return ord_no, purch_amt, ord_date, customer_id, salesman_id.

Sample table: Orders

Click me to see the solution

5. From the following tables, write a SQL query to find all the orders generated in New York city. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

6. From the following tables write a SQL query to determine the commission of the salespeople in Paris. Return commission.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

7. Write a query to display all the customers whose ID is 2001 below the salesperson ID of Mc Lyon.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

8. From the following tables write a SQL query to count the number of customers with grades above the average in New York City. Return grade and count.  

Sample table : Customer

Click me to see the solution

9. From the following tables, write a SQL query to find those salespeople who earned the maximum commission. Return ord_no, purch_amt, ord_date, and salesman_id.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

10. From the following tables write SQL query to find the customers who placed orders on 17th August 2012. Return ord_no, purch_amt, ord_date, customer_id, salesman_id and cust_name.

Sample table: Orders Sample table : Custo
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
mer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

11. From the following tables write a SQL query to find salespeople who had more than one customer. Return salesman_id and name.

Sample table : Customer Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13

Click me to see the solution

12. From the following tables write a SQL query to find those orders, which are higher than the average amount of the orders. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

13. From the following tables write a SQL query to find those orders that are equal or higher than the average amount of the orders. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

14. Write a query to find the sums of the amounts from the orders table, grouped by date, and eliminate all dates where the sum was not at least 1000.00 above the maximum order amount for that date.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

15. Write a query to extract all data from the customer table if and only if one or more of the customers in the customer table are located in London. Sample table : Customer

customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

16. From the following tables write a SQL query to find salespeople who deal with multiple customers. Return salesman_id, name, city and commission.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13

Click me to see the solution

17. From the following tables write a SQL query to find salespeople who deal with a single customer. Return salesman_id, name, city and commission.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13

Click me to see the solution

18. From the following tables, write a SQL query to find the salespeople who deal the customers with more than one order. Return salesman_id, name, city and commission.

Sample table: Salesman
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
Sample table : Customer

Click me to see the solution

19. From the following tables write a SQL query to find all salespeople who are located in any city where there is at least one customer. Return salesman_id, name, city and commission.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

20. From the following tables write a SQL query to find salespeople whose place of residence matches any city where customers live. Return salesman_id, name, city and commission.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table : Customer

Click me to see the solution

21. From the following tables write a SQL query to find all those salespeople whose names appear alphabetically lower than the customer’s name. Return salesman_id, name, city, commission.

Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
Sample table : Customer

Click me to see the solution

22. From the following table write a SQL query to find all those customers with a higher grade than all the customers alphabetically below the city of New York. Return customer_id, cust_name, city, grade, salesman_id.

Sample table : Customer

Click me to see the solution

23. From the following table write a SQL query to find all those orders whose order amount exceeds at least one of the orders placed on September 10th 2012. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Orders
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

Click me to see the solution

24. From the following tables write a SQL query to find orders where the order amount is less than the order amount of a customer residing in London City. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

25. From the following tables write a SQL query to find those orders where every order amount is less than the maximum order amount of a customer who lives in London City. Return ord_no, purch_amt, ord_date, customer_id and salesman_id.

Sample table: Orders
ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

ord_no      purch_amt   ord_date    customer_id  salesman_id
----------  ----------  ----------  -----------  -----------
70001       150.5       2012-10-05  3005         5002
70009       270.65      2012-09-10  3001         5005
70002       65.26       2012-10-05  3002         5001
70004       110.5       2012-08-17  3009         5003
70007       948.5       2012-09-10  3005         5002
70005       2400.6      2012-07-27  3007         5001
70008       5760        2012-09-10  3002         5001
70010       1983.43     2012-10-10  3004         5006
70003       2480.4      2012-10-10  3009         5003
70012       250.45      2012-06-27  3008         5002
70011       75.29       2012-08-17  3003         5007
70013       3045.6      2012-04-25  3002         5001

26. From the following tables write a SQL query to find those customers whose grades are higher than those living in New York City. Return customer_id, cust_name, city, grade and salesman_id.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

27. From the following tables write a SQL query to calculate the total order amount generated by a salesperson. Salespersons should be from the cities where the customers reside. Return salesperson name, city and total order amount.

Sample table: Orders Sample table: Salesman
salesman_id  name        city        commission
-----------  ----------  ----------  ----------
5001         James Hoog  New York    0.15
5002         Nail Knite  Paris       0.13
5005         Pit Alex    London      0.11
5006         Mc Lyon     Paris       0.14
5003         Lauson Hen  San Jose    0.12
5007         Paul Adam   Rome        0.13
Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

28. From the following tables write a SQL query to find those customers whose grades are not the same as those who live in London City. Return customer_id, cust_name, city, grade and salesman_id.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

Click me to see the solution

29. From the following tables write a SQL quer

customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007

y to find those customers whose grades are different from those living in Paris. Return customer_id, cust_name, city, grade and salesman_id.

Sample table : Customer
customer_id  cust_name     city        grade       salesman_id
-----------  ------------  ----------  ----------  -----------
3002         Nick Rimando  New York    100         5001
3005         Graham Zusi   California  200         5002
3001         Brad Guzan    London      100         5005
3004         Fabian Johns  Paris       300         5006
3007         Brad Davis    New York    200         5001
3009         Geoff Camero  Berlin      100         5003
3008         Julian Green  London      300         5002
3003         Jozy Altidor  Moncow      200         5007
COM_ID COM_NAME
------ -------------
    11 Samsung
    12 iBall
    13 Epsion
    14 Zebronics
    15 Asus
    16 Frontech
COM_ID COM_NAME
------ -------------
    11 Samsung
    12 iBall
    13 Epsion
    14 Zebronics
    15 Asus
    16 Frontech

Click me to see the solution

30. From the following tables write a SQL query to find all those customers who have different grades than any customer who lives in Dallas City. Return customer_id, cust_name,city, grade and salesman_id.

Sample table : Customer

Click me to see the solution

31. From the following tables write a SQL query to calculate the average price of each manufacturer's product along with their name. Return Average Price and Company.

Sample table: company_mast Sample table: item_mast
 PRO_ID PRO_NAME                       PRO_PRICE    PRO_COM
------- ------------------------- -------------- ----------
    101 Mother Board                    3200.00         15
    102 Key Board                        450.00         16
    103 ZIP drive                        250.00         14
    104 Speaker                          550.00         16
    105 Monitor                         5000.00         11
    106 DVD drive                        900.00         12
    107 CD drive                         800.00         12
    108 Printer                         2600.00         13
    109 Refill cartridge                 350.00         13
    110 Mouse                            250.00         12

Click me to see the solution

32. From the following tables write a SQL query to calculate the average price of each manufacturer's product of 350 or more. Return Average Price and Company.

Sample table: company_mast Sample table: item_mast

Click me to see the solution

 EMP_IDNO EMP_FNAME       EMP_LNAME         EMP_DEPT
--------- --------------- --------------- ----------
   127323 Michale         Robbin                  57
   526689 Carlos          Snares                  63
   843795 Enric           Dosio                   57
   328717 Jhon            Snares                  63
   444527 Joseph          Dosni                   47
   659831 Zanifer         Emily                   47
   847674 Kuleswar        Sitaraman               57
   748681 Henrey          Gabriel                 47
   555935 Alex            Manuel                  57
   539569 George          Mardy                   27
   733843 Mario           Saule                   63
   631548 Alan            Snappy                  27
   839139 Maria           Foster                  57

33. From the following tables, write a SQL query to find the most expensive product of each company. Return Product Name, Price and Company.

Sample table: company_mast
 PRO_ID PRO_NAME                       PRO_PRICE    PRO_COM
------- ------------------------- -------------- ----------
    101 Mother Board                    3200.00         15
    102 Key Board                        450.00         16
    103 ZIP drive                        250.00         14
    104 Speaker                          550.00         16
    105 Monitor                         5000.00         11
    106 DVD drive                        900.00         12
    107 CD drive                         800.00         12
    108 Printer                         2600.00         13
    109 Refill cartridge                 350.00         13
    110 Mouse                            250.00         12
COM_ID COM_NAME
------ -------------
    11 Samsung
    12 iBall
    13 Epsion
    14 Zebronics
    15 Asus
    16 Frontech
Sample table: item_mast

Click me to see the solution

34. From the following tables write a SQL query to find employees whose last name is Gabriel or Dosio. Return emp_idno, emp_fname, emp_lname and emp_dept.

Sample table: emp_details

Click me to see the solution

35. From the following tables, write a SQL query to find the employees w

 EMP_IDNO EMP_FNAME       EMP_LNAME         EMP_DEPT
--------- --------------- --------------- ----------
   127323 Michale         Robbin                  57
   526689 Carlos          Snares                  63
   843795 Enric           Dosio                   57
   328717 Jhon            Snares                  63
   444527 Joseph          Dosni                   47
   659831 Zanifer         Emily                   47
   847674 Kuleswar        Sitaraman               57
   748681 Henrey          Gabriel                 47
   555935 Alex            Manuel                  57
   539569 George          Mardy                   27
   733843 Mario           Saule                   63
   631548 Alan            Snappy                  27
   839139 Maria           Foster                  57

ho work in department 89 or 63. Return emp_idno, emp_fname, emp_lna

 PRO_ID PRO_NAME                       PRO_PRICE    PRO_COM
------- ------------------------- -------------- ----------
    101 Mother Board                    3200.00         15
    102 Key Board                        450.00         16
    103 ZIP drive                        250.00         14
    104 Speaker                          550.00         16
    105 Monitor                         5000.00         11
    106 DVD drive                        900.00         12
    107 CD drive                         800.00         12
    108 Printer                         2600.00         13
    109 Refill cartridge                 350.00         13
    110 Mouse                            250.00         12

me and emp_dept.

Sample table: emp_details
 EMP_IDNO EMP_FNAME       EMP_LNAME         EMP_DEPT
--------- --------------- --------------- ----------
   127323 Michale         Robbin                  57
   526689 Carlos          Snares                  63
   843795 Enric           Dosio                   57
   328717 Jhon            Snares                  63
   444527 Joseph          Dosni                   47
   659831 Zanifer         Emily                   47
   847674 Kuleswar        Sitaraman               57
   748681 Henrey          Gabriel                 47
   555935 Alex            Manuel                  57
   539569 George          Mardy                   27
   733843 Mario           Saule                   63
   631548 Alan            Snappy                  27
   839139 Maria           Foster                  57

Click me to see the solution

36. From the following tables write a SQL query to find those employees who work for the department where the departmental allotment amount is more than Rs. 50000. Return emp_fname and emp_lname.

Sample table: emp_department
DPT_CODE DPT_NAME        DPT_ALLOTMENT
-------- --------------- -------------
      57 IT                      65000
      63 Finance                 15000
      47 HR                     240000
      27 RD                      55000
      89 QC                      75000
Sample table: emp_details

Click me to see the solution

37. From the following tables write a SQL query to find the departments whose sanction amount is higher than the average sanction amount for all departments. Return dpt_code, dpt_name and dpt_allotment.

Sample table: emp_department
DPT_CODE DPT_NAME        DPT_ALLOTMENT
-------- --------------- -------------
      57 IT                      65000
      63 Finance                 15000
      47 HR                     240000
      27 RD                      55000
      89 QC                      75000

Click me to see the solution

38. From the following tables write a SQL query to find which departments have more than two employees. Return dpt_name.

Sample table: emp_department
DPT_CODE DPT_NAME        DPT_ALLOTMENT
-------- --------------- -------------
      57 IT                      65000
      63 Finance                 15000
      47 HR                     240000
      27 RD                      55000
      89 QC                      75000
Sample table: emp_details
 EMP_IDNO EMP_FNAME       EMP_LNAME         EMP_DEPT
--------- --------------- --------------- ----------
   127323 Michale         Robbin                  57
   526689 Carlos          Snares                  63
   843795 Enric           Dosio                   57
   328717 Jhon            Snares                  63
   444527 Joseph          Dosni                   47
   659831 Zanifer         Emily                   47
   847674 Kuleswar        Sitaraman               57
   748681 Henrey          Gabriel                 47
   555935 Alex            Manuel                  57
   539569 George          Mardy                   27
   733843 Mario           Saule                   63
   631548 Alan            Snappy                  27
   839139 Maria           Foster                  57

Click me to see the solution

39. From the following tables write a SQL query to find the departments with the second lowest sanction amount. Return emp_fname and emp_lname.

Sample table: emp_department
DPT_CODE DPT_NAME        DPT_ALLOTMENT
-------- --------------- -------------
      57 IT                      65000
      63 Finance                 15000
      47 HR                     240000
      27 RD                      55000
      89 QC                      75000
Sample table: emp_details
 EMP_IDNO EMP_FNAME       EMP_LNAME         EMP_DEPT
--------- --------------- --------------- ----------
   127323 Michale         Robbin                  57
   526689 Carlos          Snares                  63
   843795 Enric           Dosio                   57
   328717 Jhon            Snares                  63
   444527 Joseph          Dosni                   47
   659831 Zanifer         Emily                   47
   847674 Kuleswar        Sitaraman               57
   748681 Henrey          Gabriel                 47
   555935 Alex            Manuel                  57
   539569 George          Mardy                   27
   733843 Mario           Saule                   63
   631548 Alan            Snappy                  27
   839139 Maria           Foster                  57

Click me to see the solution

 

Keep Learning: SQL Subqueries, SQL Single Row Subqueries, SQL Multiple Row and Column Subqueries, SQL Correlated Subqueries, SQL Nested subqueries.

More to Come !


Practice Online



Query visualizations are generated using Postgres Explain Visualizer (pev).

Do not submit any solution of the above exercises at here, if you want to contribute go to the appropriate exercise page.



Follow us on Facebook and Twitter for latest update.