Pandas Series: take() function
Series-take() function
The take() function is used to return the elements in the given positional indices along an axis.
This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object.
Syntax:
Series.take(self, indices, axis=0, is_copy=False, **kwargs)
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
indices | An array of ints indicating which positions to take. | array-like | Required |
axis | The axis on which to select elements. 0 means that we are selecting rows, 1 means that we are selecting columns. | {0 or ‘index’, 1 or ‘columns’, None} Default Value: 0 |
Required |
is_copy | Whether to return a copy of the original object or not. | bool Default Value: True |
Required |
**kwargs | For compatibility with numpy.take(). Has no effect on the output | Required |
Returns: taken - same type as caller An array-like containing the elements taken from the object.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([('Eagle', 'bird', 200.0),
('sparrow', 'bird', 22.0),
('tiger', 'mammal', 120.5),
('fox', 'mammal', np.nan)],
columns=['name', 'class', 'max_speed'],
index=[0, 1, 2, 3])
df
Output:
name class max_speed 0 Eagle bird 200.0 1 sparrow bird 22.0 2 tiger mammal 120.5 3 fox mammal NaN
Example - Take elements at positions 0 and 3 along the axis 0 (default):
Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3.
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([('Eagle', 'bird', 200.0),
('sparrow', 'bird', 22.0),
('tiger', 'mammal', 120.5),
('fox', 'mammal', np.nan)],
columns=['name', 'class', 'max_speed'],
index=[0, 1, 2, 3])
df.take([0, 3])
Output:
name class max_speed 0 Eagle bird 200.0 3 fox mammal NaN
Example - Take elements at indices 1 and 2 along the axis 1 (column selection):
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([('Eagle', 'bird', 200.0),
('sparrow', 'bird', 22.0),
('tiger', 'mammal', 120.5),
('fox', 'mammal', np.nan)],
columns=['name', 'class', 'max_speed'],
index=[0, 1, 2, 3])
df.take([1, 2], axis=1)
Output:
class max_speed 0 bird 200.0 1 bird 22.0 2 mammal 120.5 3 mammal NaN
We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists.
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([('Eagle', 'bird', 200.0),
('sparrow', 'bird', 22.0),
('tiger', 'mammal', 120.5),
('fox', 'mammal', np.nan)],
columns=['name', 'class', 'max_speed'],
index=[0, 1, 2, 3])
df.take([-1, -2])
Output:
name class max_speed 3 fox mammal NaN 2 tiger mammal 120.5
Previous: Series-set_axis() function
Next: Series-tail() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics