Pandas Series: filter() function
Subset rows or columns of Pandas dataframe
The filter() function is used to subset rows or columns of dataframe according to labels in the specified index.
Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.
Syntax:
Series.filter(self, items=None, like=None, regex=None, axis=None)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
items | Keep labels from axis which are in items. | list-like | Required |
like | Keep labels from axis for which “like in label == True”. | string | Required |
regex | Keep labels from axis for which re.search(regex, label) == True. | string (regular expression) | Required |
axis | The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame. | int or string axis name | Required |
Returns: same type as input object
Notes: The items, like, and regex parameters are enforced to be mutually exclusive.
axis defaults to the info axis that is used when indexing with [].
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.array(([2, 3, 4], [5, 6, 7])),
index=['bat', 'cat'],
columns=['one', 'two', 'three'])
# select columns by name
df.filter(items=['one', 'three'])
Output:
one three bat 2 4 cat 5 7
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.array(([2, 3, 4], [5, 6, 7])),
index=['bat', 'cat'],
columns=['one', 'two', 'three'])
# select columns by regular expression
df.filter(regex='e$', axis=1)
Output:
one three bat 2 4 cat 5 7
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.array(([2, 3, 4], [5, 6, 7])),
index=['bat', 'cat'],
columns=['one', 'two', 'three'])
# select rows containing 'ca'
df.filter(like='ca', axis=0)
Output:
one two three cat 5 6 7
Previous: Suffix labels with string suffix in Pandas series
Next: Detect missing values in the given Pandas series
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics