Pandas Series: drop_duplicates() function
Remove Pandas series with duplicate values
The drop_duplicates() function is used to get Pandas series with duplicate values removed.
Syntax:
Series.drop_duplicates(self, keep='first', inplace=False)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
keep |
|
{‘first’, ‘last’, False} Default Value: ‘first’ |
Required |
inplace | If True, performs operation inplace and returns None. | bool Default Value: False |
Required |
Returns: Series
Series with duplicates dropped.
Example - Generate a Series with duplicated entries:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['cat', 'cow', 'cat', 'dog', 'cat', 'fox'],
name='animal')
s
Output:
0 cat 1 cow 2 cat 3 dog 4 cat 5 fox Name: animal, dtype: object
Example - With the ‘keep’ parameter, the selection behaviour of duplicated values can be changed. The value ‘first’ keeps the first occurrence for each set of duplicated entries. The default value of keep is ‘first’:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['cat', 'cow', 'cat', 'dog', 'cat', 'fox'],
name='animal')
s.drop_duplicates()
Output:
0 cat 1 cow 3 dog 5 fox Name: animal, dtype: object
Example - The value ‘last’ for parameter ‘keep’ keeps the last occurrence for each set of duplicated entries:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['cat', 'cow', 'cat', 'dog', 'cat', 'fox'],
name='animal')
s.drop_duplicates(keep='last')
Output:
1 cow 3 dog 4 cat 5 fox Name: animal, dtype: object
Example - The value False for parameter ‘keep’ discards all sets of duplicated entries. Setting the value of ‘inplace’ to True performs the operation inplace and returns None:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['cat', 'cow', 'cat', 'dog', 'cat', 'fox'],
name='animal')
s.drop_duplicates(keep=False, inplace=True)
s
Output:
1 cow 3 dog 5 fox Name: animal, dtype: object
Previous: Series-droplevel() function
Next: Indicate duplicate Series values
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics