Pandas Series: rename() function
Alter Series index in Pandas
The rename() function is used to alter Series index labels or name.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
Alternatively, change Series.name with a scalar value.
Syntax:
Series.rename(self, index=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
index | dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the Series.name attribute. | scalar, hashable sequence, dict-like or function | optional |
copy | Whether to copy underlying data. | bool Default Value: True |
Required |
inplace | Whether to return a new Series. If True then value of copy is ignored. | bool Default Value: False |
Required |
level | In case of a MultiIndex, only rename labels in the specified level. | int or level name Default Value: None |
Required |
Returns: Series
Series with index labels or name altered.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s
Output:
0 2 1 3 2 4 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename("my_name") # scalar, changes Series.name
Output:
0 2 1 3 2 4 Name: my_name, dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename(lambda x: x ** 2) # function, changes labels
Output:
0 2 1 3 4 4 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename({1: 4, 2: 5}) # mapping, changes labels
Output:
0 2 4 3 5 4 dtype: int64
Previous: Object with matching indices as other object in Pandas
Next: Set the name of the axis in Pandas
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics