Pandas Series: rename() function
Alter Series index in Pandas
The rename() function is used to alter Series index labels or name.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
Alternatively, change Series.name with a scalar value.
Syntax:
Series.rename(self, index=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
index | dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the Series.name attribute. | scalar, hashable sequence, dict-like or function | optional |
copy | Whether to copy underlying data. | bool Default Value: True |
Required |
inplace | Whether to return a new Series. If True then value of copy is ignored. | bool Default Value: False |
Required |
level | In case of a MultiIndex, only rename labels in the specified level. | int or level name Default Value: None |
Required |
Returns: Series
Series with index labels or name altered.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s
Output:
0 2 1 3 2 4 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename("my_name") # scalar, changes Series.name
Output:
0 2 1 3 2 4 Name: my_name, dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename(lambda x: x ** 2) # function, changes labels
Output:
0 2 1 3 4 4 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.rename({1: 4, 2: 5}) # mapping, changes labels
Output:
0 2 4 3 5 4 dtype: int64
Previous: Object with matching indices as other object in Pandas
Next: Set the name of the axis in Pandas
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-rename.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics