Pandas Series: add_prefix() function
Prefix labels with string prefix in Pandas series
The add_prefix() function is used to prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
Syntax:
Series.add_prefix(self, prefix)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
prefix | The string to add before each label. | str | Required |
Returns: Series or DataFrame
New Series or DataFrame with updated labels.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4, 5])
s
Output:
0 2 1 3 2 4 3 5 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4, 5])
s.add_prefix('item_')
Output:
item_0 2 item_1 3 item_2 4 item_3 5 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [2, 3, 4, 5], 'Y': [4, 5, 6, 7]})
df
Output:
X Y 0 2 4 1 3 5 2 4 6 3 5 7
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [2, 3, 4, 5], 'Y': [4, 5, 6, 7]})
df.add_prefix('col_')
Output:
col_X col_Y 0 2 4 1 3 5 2 4 6 3 5 7
Previous: Replace values in Pandas Series
Next: Suffix labels with string suffix in Pandas series
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics