Pandas Series: add_prefix() function
Prefix labels with string prefix in Pandas series
The add_prefix() function is used to prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
Syntax:
Series.add_prefix(self, prefix)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
prefix | The string to add before each label. | str | Required |
Returns: Series or DataFrame
New Series or DataFrame with updated labels.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4, 5])
s
Output:
0 2 1 3 2 4 3 5 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4, 5])
s.add_prefix('item_')
Output:
item_0 2 item_1 3 item_2 4 item_3 5 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [2, 3, 4, 5], 'Y': [4, 5, 6, 7]})
df
Output:
X Y 0 2 4 1 3 5 2 4 6 3 5 7
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [2, 3, 4, 5], 'Y': [4, 5, 6, 7]})
df.add_prefix('col_')
Output:
col_X col_Y 0 2 4 1 3 5 2 4 6 3 5 7
Previous: Replace values in Pandas Series
Next: Suffix labels with string suffix in Pandas series
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-add_prefix.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics