Pandas Series: droplevel() function
Series-droplevel() function
The droplevel() function is used to return DataFrame with requested index / column level(s) removed.
Syntax:
Series.droplevel(self, level, axis=0)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
level | If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. | int, str, or list-like | Required |
axis | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
Returns: DataFrame.droplevel()
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([
[2, 3, 4, 5],
[6, 7, 8, 9],
[10, 11, 12, 13]
]).set_index([0, 1]).rename_axis(['p', 'q'])
df.columns = pd.MultiIndex.from_tuples([
('r', 't'), ('s', 'v')
], names=['level_1', 'level_2'])
df
Output:
level_1 r s level_2 t v p q 2 3 4 5 6 7 8 9 10 11 12 13
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([
[2, 3, 4, 5],
[6, 7, 8, 9],
[10, 11, 12, 13]
]).set_index([0, 1]).rename_axis(['p', 'q'])
df.columns = pd.MultiIndex.from_tuples([
('r', 't'), ('s', 'v')
], names=['level_1', 'level_2'])
df.droplevel('p')
Output:
level_1 r s level_2 t v q 3 4 5 7 8 9 11 12 13
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame([
[2, 3, 4, 5],
[6, 7, 8, 9],
[10, 11, 12, 13]
]).set_index([0, 1]).rename_axis(['p', 'q'])
df.columns = pd.MultiIndex.from_tuples([
('r', 't'), ('s', 'v')
], names=['level_1', 'level_2'])
df.droplevel('level_2', axis=1)
Output:
level_1 r s p q 2 3 4 5 6 7 8 9 10 11 12 13
Previous: Remove series with specified index labels
Next: Remove Pandas series with duplicate values
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-droplevel.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics