Pandas: Series - unique() function
Unique values of Series object in Pandas
The unique() function is used to get unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.
Syntax:
Series.unique(self)
Returns: ndarray or ExtensionArray
The unique values returned as a NumPy array. See Notes.
Notes: Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new ExtensionArray of that type with just the unique values is returned. This includes
- Categorical
- Period
- Datetime with Timezone
- Interval
- Sparse
- IntegerNA
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([2, 4, 3, 3], name='P').unique()
Output:
array([2, 4, 3], dtype=int64)
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([2, 4, 3, 3], name='P').unique()
pd.Series([pd.Timestamp('2019-01-01') for _ in range(3)]).unique()
Output:
array(['2019-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([2, 4, 3, 3], name='P').unique()
pd.Series([pd.Timestamp('2019-01-01', tz='US/Eastern')
for _ in range(3)]).unique()
Output:
['2019-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern]
Example - An unordered Categorical will return categories in the order of appearance:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series(pd.Categorical(list('qppqr'))).unique()
Output:
[q, p, r] Categories (3, object): [q, p, r]
Example - An ordered Categorical preserves the category ordering:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series(pd.Categorical(list('qppqr'), categories=list('pqr'),
ordered=True)).unique()
Output:
[q, p, r] Categories (3, object): [p < q < r]
Previous: Sum of the values for the requested axis in Pandas
Next: Series containing counts of unique values in Pandas
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics