Pandas: Series - all() function
Test whether all element is true over requested Pandas axis
The all() function is used to check whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).
Syntax:
Series.all(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | Indicate which axis or axes should be reduced.
|
{0 or ‘index’, 1 or ‘columns’, None} |
Required |
bool_only | Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. | bool Default Value: None |
Required |
skipna | Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. | bool Default Value: True |
Required |
level | If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. | nt or level name Default Value: None |
Required |
kwargs | Additional keywords have no effect but might be accepted for compatibility with NumPy. | any Default Value: None |
Required |
Returns: scalar or Series
If level is specified, then, Series is returned; otherwise, scalar is returned.
Example - Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([True, True]).all()
Output:
True
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([False, True]).all()
Output:
False
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([]).all()
Output:
True
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([np.nan]).all()
Output:
True
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([np.nan]).all(skipna=False)
Output:
True
Example - DataFrames:
Create a dataframe from a dictionary.
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'c1': [True, True], 'c2': [True, False]})
df
Output:
c1 c2 0 True True 1 True False
Example - Default behaviour checks if column-wise values all return True:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'c1': [True, True], 'c2': [True, False]})
df.all()
Output:
c1 True c2 False dtype: bool
Example - Specify axis='columns' to check if row-wise values all return True:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'c1': [True, True], 'c2': [True, False]})
df.all(axis='columns')
Output:
0 True 1 False dtype: bool
Example - Or axis=None for whether every value is True:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'c1': [True, True], 'c2': [True, False]})
df.all(axis=None)
Output:
False
Previous: Pandas absolute value of column
Next: Test whether any element is true over requested Pandas axis
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-all.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics