Pandas Series: cumsum() function
Cumulative sum over a Pandas DataFrame or Series axis
The cumsum() function is used to get cumulative sum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative sum.
Syntax:
Series.cumsum(self, axis=None, skipna=True, *args, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | The index or the name of the axis. 0 is equivalent to None or ‘index’. | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
skipna | Exclude NA/null values. If an entire row/column is NA, the result will be NA. | boolean Default Value: True |
Required |
*args, **kwargs | Additional keywords have no effect but might be accepted for compatibility with NumPy. | Required |
Returns: scalar or Series
Example - Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([3, np.nan, 4, -5, 0])
s
Output:
0 3.0 1 NaN 2 4.0 3 -5.0 4 0.0 dtype: float64
Example - By default, NA values are ignored:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([3, np.nan, 4, -5, 0])
s.cumsum()
Output:
0 3.0 1 NaN 2 7.0 3 2.0 4 2.0 dtype: float64
Example - To include NA values in the operation, use skipna=False:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([3, np.nan, 4, -5, 0])
s.cumsum(skipna=False)
Output:
0 3.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
Previous: Cumulative product of a Pandas series
Next: Generate descriptive statistics in Pandas
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-cumsum.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics