w3resource

Pandas: Series - prod() function

Product of the values for the requested Pandas axis

The prod() function is used to get the product of the values for the requested axis.

Syntax:

Series.prod(self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)

Parameters:

Name Description Type/Default Value Required / Optional
axis Axis for the function to be applied on. {index (0)} Required
skipna Exclude NA/null values when computing the result. bool
Default Value: True
Required
level If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. int or level name
Default Value: None
Required
numeric_only Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. bool
Default Value: None
Required
min_count The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
int
Default Value: 0
Required
**kwargs Additional keyword arguments to be passed to the function. Required

Returns: scalar or Series (if level specified)

Example - By default, the product of an empty or all-NA Series is 1:

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([]).prod()

Output:

1.0

Example - This can be controlled with the min_count parameter:

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([]).prod(min_count=1)

Output:

nan

Example - skipna parameter, min_count handles all-NA and empty series identically:

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([np.nan]).prod()

Output:

1.0

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([np.nan]).prod(min_count=1)

Output:

nan

Previous: Percentage change between the current and a prior element
Next: Value at the given quantile



Follow us on Facebook and Twitter for latest update.