Pandas Series: autocorr() function
Compute the lag-N autocorrelation in Pandas
The autocorr() function is used to compute the lag-N autocorrelation.
This method computes the Pearson correlation between the Series and its shifted self.
Syntax:
Series.autocorr(self, lag=1)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
lag | Number of lags to apply before performing autocorrelation. | int Default Value: 1 |
Required |
Returns: float
The Pearson correlation between self and self.shift(lag)
Notes: If the Pearson correlation is not well defined return ‘NaN’.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([0.35, 0.6, 0.4, -0.06])
s.autocorr() # doctest: +ELLIPSIS
Output:
0.03350474249762301
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([0.35, 0.6, 0.4, -0.06])
s.autocorr(lag=2) # doctest: +ELLIPSIS
Output:
-1.0
Example - If the Pearson correlation is not well defined, then ‘NaN’ is returned:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 0, 0, 0])
s.autocorr()
Output:
nan
Previous: Test whether all element is true over requested Pandas axis
Next: Boolean Series in Pandas
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics