NumPy Data type: promote_types() function
numpy.promote_types() function
The NumPy promote_types() function returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast. The returned data type is always in native byte order.
This function is symmetric, but rarely associative.
Version: 1.15.0
Syntax:
numpy.promote_types(type1, type2)
Parameter:
Name | Description | Required / Optional |
---|---|---|
type1 | First data type. | Required |
type2 | Second data type. | Required |
Return value:
out : dtype - The promoted data type.
Example-1: numpy.promote_types() function
>>> import numpy as np
>>> np.promote_types('f4', 'f8')
dtype('float64')
>>>
>>> np.promote_types('i8', 'f4')
dtype('float64')
>>>
>>> np.promote_types('>i8', '<c8')
dtype('complex128')
>>>
>>> np.promote_types('i4', 'S8')
dtype('S11')
Pictorial Presentation:
Pictorial Presentation:
Example-2: numpy.promote_types() function
>>> import numpy as np
>>> p = np.promote_types
>>> p('S', p('i1', 'u1'))
dtype('S6')
>>> p(p('S', 'i1'), 'u1')
dtype('S4')
Pictorial Presentation:
Pictorial Presentation:
Python - NumPy Code Editor:
Previous:
Data type can_cast()
Next:
min_scalar_type()
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics