NumPy: Data type
Data type
A data type object describes how the bytes in the fixed-size block of memory corresponding to an array item should be interpreted. It describes the following aspects of the data:
- Type of the data (integer, float, Python object, etc.)
- Size of the data (number of bytes is in e.g. the integer)
- Byte order of the data (little-endian or big-endian)
- If the data type is structured, an aggregate of other data types,
- Type of the data (integer, float, Python object, etc.)
- Size of the data (how many bytes is in e.g. the integer)
- Byte order of the data (little-endian or big-endian)
- If the data type is structured, an aggregate of other data types, (e.g., describing an array item consisting of an integer and a float),
- If the data type is a sub-array, what is its shape and data type.
Data type routines | ||
Name | Description | Syntax |
can_cast() | Returns True if cast between data types can occur according to the casting rule | numpy.can_cast(from_, to, casting='safe') |
promote_types() | Returns the data type with the smallest size and smallest scalar kind to which both type1 and type2 may be safely cast. | numpy.promote_types(type1, type2) |
min_scalar_type() | Returns the data type with the smallest size and smallest scalar kind which can hold its value. | numpy.min_scalar_type(a) |
result_type() | Returns the type that results from applying the NumPy type promotion rules to the arguments. | numpy.result_type(*arrays_and_dtypes) |
common_type() | Return a scalar type which is common to the input arrays. | numpy.common_type(*arrays) |
obj2sctype() | Return the scalar dtype or NumPy equivalent of Python type of an object. | numpy.obj2sctype(rep, default=None) |
Creating data types | ||
Name | Description | Syntax |
dtype | Create a data type object. | class numpy.dtype(obj, align=False, copy=False) |
format_parser | Class to convert formats, names, titles description to a dtype. | class numpy.format_parser(formats, names, titles, aligned=False, byteorder=None) |
Data type information | ||
Name | Description | Syntax |
finfo() | Machine limits for integer types. | class numpy.finfo(dtype) |
iinfo() | Machine limits for integer types. | class numpy.iinfo(type) |
MachAr() | Diagnosing machine parameters. | class numpy.MachAr(float_conv=<class 'float'>, int_conv=<class 'int'>, float_to_float=<class 'float'>, float_to_str=<function MachAr.<lambda>>, title='Python floating point number') |
Data type testing | ||
Name | Description | Syntax |
issctype() | Determines whether the given object represents a scalar data-type. | numpy.iinfo(type) |
issubdtype() | Returns True if first argument is a typecode lower/equal in type hierarchy. | numpy.issubdtype(arg1, arg2) |
issubsctype() | Determine if the first argument is a subclass of the second argument. | numpy.issubsctype(arg1, arg2) |
issubclass_() | Determine if a class is a subclass of a second class. | numpy.issubclass_(arg1, arg2) |
find_common_type() | Determine common type following standard coercion rules. | numpy.find_common_type(array_types, scalar_types) |
Miscellaneous | ||
Name | Description | Syntax |
typename() | Return a description for the given data type code. | numpy.typename(char) |
sctype2char() | Return the string representation of a scalar dtype. | numpy.sctype2char(sctype) |
mintypecode() | Return the character for the minimum-size type to which given types can be safely cast. | numpy.mintypecode(typechars, typeset='GDFgdf', default='d') |
Previous:
Convenience class chararray()
Next:
Data type
can_cast()
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/numpy/data-type-routines/index.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics