NumPy Data type: min_scalar_type() function
numpy.min_scalar_type() function
For scalar a, returns the data type with the smallest size and smallest scalar kind which can hold its value. For non-scalar array a, returns the vector’s dtype unmodified.
Floating point values are not demoted to integers, and complex values are not demoted to floats.
Version: 1.15.0
Syntax:
numpy.min_scalar_type(a)
Parameter:
Name | Description | Required / Optional |
---|---|---|
a | The value whose minimal data type is to be found. | Required |
Return value:
out : dtype - The minimal data type.
Example: numpy.min_sclar_type() function
>>> import numpy as np
>>> np.min_scalar_type(160)
dtype('uint8')
>>> np.min_scalar_type(-250)
dtype('int16')
Example: numpy.min_sclar_type() function
>>> import numpy as np
>>> np.min_scalar_type(5.5)
dtype('float16')
>>> np.min_scalar_type(2e5)
dtype('float32')
>>> np.min_scalar_type(np.arange(6,dtype='f8'))
dtype('float64')
Python - NumPy Code Editor:
Previous:
promote_types()
Next:
result_type()
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/numpy/data-type-routines/min_scalar_type.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics