NumPy Data type: find_common_type() function
numpy.find_common_type() function
The find_common_type() function determine common type following standard coercion rules.
Version: 1.15.0
Syntax:
numpy.find_common_type(array_types, scalar_types)
Parameter:
Name | Description | Required / Optional |
---|---|---|
array_types : sequence | A list of dtypes or dtype convertible objects representing arrays. | Required |
scalar_types : sequence | A list of dtypes or dtype convertible objects representing scalars. | Required |
Return value:
datatype : dtype
The common data type, which is the maximum of array_types ignoring scalar_types, unless the maximum of scalar_types is of a different kind (dtype.kind). If the kind is not understood, then None is returned.
Example: numpy.find_common_type() Function
>>> import numpy as np
>>> np.find_common_type([], [np.int64, np.float32, complex])
dtype('complex128')
>>> np.find_common_type([np.int64, np.float32], [])
dtype('float64')
The standard casting rules ensure that a scalar cannot up-cast an array unless the scalar is of a fundamentally different kind of data (i.e. under a different hierarchy in the data type hierarchy) then the array:
Example: numpy.find_common_type() function
>>> import numpy as np
>>> np.find_common_type([np.float32], [np.int64, np.float64])
dtype('float32')
Complex is of a different type, so it up-casts the float in the array_types argument:
Example: numpy.find_common_type() function
>>> import numpy as np
>>> np.find_common_type([np.float32], [complex])
dtype('complex128')
Type specifier strings are convertible to dtypes and can therefore be used instead of dtypes:
Example: numpy.find_common_type() function
>>> import numpy as np
>>> np.find_common_type(['f4', 'f4', 'i4'], ['c8'])
dtype('complex128')
Python - NumPy Code Editor:
Previous:
issubclass_()
Next:
Miscellaneous typename()
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics