w3resource

SQL MAX() with HAVING

MAX() function with Having

In this article we have discussed how SQL HAVING CLAUSE can be used along with the SQL MAX() to find the maximum value of a column over each group. The SQL HAVING CLAUSE is reserved for aggregate function.

The usage of WHERE clause along with SQL MAX() have also described in this page.

The SQL IN OPERATOR which checks a value within a set of values and retrieve the rows from the table can also be used with MAX function.

Example :

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get data of 'cust_city', 'cust_country' and maximum 'outstanding_amt' from the customer table with following conditions -

1. the combination of 'cust_country' and 'cust_city' should make a group'

the following SQL statement can be used :


SELECT cust_city, cust_country, MAX(outstanding_amt)  -- Selects the cust_city, cust_country, and the maximum outstanding_amt for each combination of cust_country and cust_city
FROM customer  -- Specifies the 'customer' table as the source of data
GROUP BY cust_country, cust_city  -- Groups the result set by cust_country and cust_city
HAVING MAX(outstanding_amt) > 10000;  -- Filters the grouped results to include only those where the maximum outstanding_amt is greater than 10000

Explanation:

  • SELECT cust_city, cust_country, MAX(outstanding_amt): This part of the query selects three columns: 'cust_city', 'cust_country', and the maximum value of the 'outstanding_amt' column for each combination of 'cust_country' and 'cust_city'. The MAX() function calculates the maximum value of the 'outstanding_amt' column within each group of rows with the same combination of 'cust_country' and 'cust_city'.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'customer' table.
  • GROUP BY cust_country, cust_city: This clause groups the result set by the 'cust_country' and 'cust_city' columns. The GROUP BY clause is used to aggregate the rows based on the values in these columns. This means that calculations performed in the SELECT statement (such as finding the maximum outstanding_amt) will be applied separately for each unique combination of 'cust_country' and 'cust_city'.
  • HAVING MAX(outstanding_amt) > 10000: This clause filters the grouped results to include only those groups where the maximum outstanding_amt is greater than 10000. The HAVING clause is used in combination with aggregate functions like MAX() to filter the grouped results based on aggregate values.

Relational Algebra Expression:

Relational Algebra Expression: MAX() function  with Having.

Relational Algebra Tree:

Relational Algebra Tree: MAX() function  with Having.

Output :

CUST_CITY                           CUST_COUNTRY         MAX(OUTSTANDING_AMT)
----------------------------------- -------------------- --------------------
Bangalore                           India                               12000
Chennai                             India                               11000
London                              UK                                  11000
Mumbai                              India                               12000
Torento                             Canada                              11000

Visual Presentation :

SQL MAX() function WITH HAVING example

SQL MAX() in where

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get data of 'cust_country' and maximum 'outstanding_amt' from the 'customer' table with following conditions -

1. 'cust_country' should be formatted in a group,

2. 'grade' must be 2,

the following SQL statement can be used :


SELECT cust_country, MAX(outstanding_amt)  -- Selects the cust_country and the maximum outstanding_amt for each cust_country
FROM customer  -- Specifies the 'customer' table as the source of data
WHERE grade = 2  -- Filters the rows to include only those where the grade column is equal to 2
GROUP BY cust_country;  -- Groups the result set by cust_country

Explanation:

  • SELECT cust_country, MAX(outstanding_amt): This part of the query selects two columns: 'cust_country' and the maximum value of the 'outstanding_amt' column for each 'cust_country'. The MAX() function calculates the maximum value of the 'outstanding_amt' column within each group of rows with the same 'cust_country'.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'customer' table.
  • WHERE grade = 2: This clause filters the rows from the 'customer' table to include only those where the 'grade' column is equal to 2. It restricts the data to only include customers with a grade of 2.
  • GROUP BY cust_country: This clause groups the result set by the 'cust_country' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'cust_country' column. This means that calculations performed in the SELECT statement (such as finding the maximum outstanding_amt) will be applied separately for each unique value in the 'cust_country' column.

Relational Algebra Expression:

Relational Algebra Expression: SQL MAX() in where.

Relational Algebra Tree:

Relational Algebra Tree: SQL MAX() in where.

Output :

CUST_COUNTRY         MAX(OUTSTANDING_AMT)
-------------------- --------------------
USA                                  6000
India                               12000
Australia                            5000
Canada                               8000
UK                                   6000

Visual Presentation :

SQL MAX() function with WHERE example

SQL MAX() with IN operator

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get data of 'opening_amt' and maximum of 'outstanding_amt' from the 'customer' table with following conditions -

1. the 'opening_amt' should come in a group,

2. the 'opening_amt' should be 3000 or 8000 or 10000,

the following SQL statement can be used :


SELECT opening_amt, MAX(outstanding_amt)  -- Selects the opening_amt and the maximum outstanding_amt for each opening_amt
FROM customer  -- Specifies the 'customer' table as the source of data
GROUP BY opening_amt  -- Groups the result set by opening_amt
HAVING opening_amt IN (3000, 8000, 10000);  -- Filters the grouped results to include only those with opening_amt values of 3000, 8000, or 10000

Explanation:

  • SELECT opening_amt, MAX(outstanding_amt): This part of the query selects two columns: 'opening_amt' and the maximum value of the 'outstanding_amt' column for each 'opening_amt'. The MAX() function calculates the maximum value of the 'outstanding_amt' column within each group of rows with the same 'opening_amt'.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'customer' table.
  • GROUP BY opening_amt: This clause groups the result set by the 'opening_amt' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'opening_amt' column. This means that calculations performed in the SELECT statement (such as finding the maximum outstanding_amt) will be applied separately for each unique value in the 'opening_amt' column.
  • HAVING opening_amt IN (3000, 8000, 10000): This clause filters the grouped results to include only those groups where the 'opening_amt' values are either 3000, 8000, or 10000. The HAVING clause is used in combination with the IN operator to filter groups based on specific values.

Output :

OPENING_AMT MAX(OUTSTANDING_AMT)
----------- --------------------
      10000                11000
       3000                 6000
       8000                12000

Visual Presentation :

SQL MAX() function with IN operator example

SQL MAX() with HAVING and IN

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To get data of 'agent_code', number of agents as 'count(agent_code)' and the maximum 'ord_amount' from the 'orders' table with following conditions -

1. 'agent_code' should be formatted in a group,

2. maximum 'ord_amount' should be 500 or 800 or 2000,

the following SQL statement can be used :


SELECT agent_code, COUNT(agent_code), MAX(ord_amount)  -- Selects the agent_code, the count of occurrences of each agent_code, and the maximum ord_amount for each agent_code
FROM orders  -- Specifies the 'orders' table as the source of data
GROUP BY agent_code  -- Groups the result set by agent_code
HAVING MAX(ord_amount) IN (500, 800, 2000);  -- Filters the grouped results to include only those with maximum ord_amount values of 500, 800, or 2000

Explanation:

  • SELECT agent_code, COUNT(agent_code), MAX(ord_amount): This part of the query selects three columns: 'agent_code', the count of occurrences of each 'agent_code', and the maximum value of the 'ord_amount' column for each 'agent_code'. The COUNT() function calculates the number of occurrences of each 'agent_code' within the group, and the MAX() function calculates the maximum value of the 'ord_amount' column within each group.
  • FROM orders: This specifies the source of the data for the query, which is the 'orders' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'orders' table.
  • GROUP BY agent_code: This clause groups the result set by the 'agent_code' column. The GROUP BY clause is used to aggregate the rows based on the values in the 'agent_code' column. This means that calculations performed in the SELECT statement (such as counting occurrences of agent_code and finding the maximum ord_amount) will be applied separately for each unique value in the 'agent_code' column.
  • HAVING MAX(ord_amount) IN (500, 800, 2000): This clause filters the grouped results to include only those groups where the maximum 'ord_amount' values are either 500, 800, or 2000. The HAVING clause is used in combination with the IN operator to filter groups based on specific values.

Output :

AGENT_CODE COUNT(AGENT_CODE) MAX(ORD_AMOUNT)
---------- ----------------- ---------------
A007                       2            2000
A009                       1             500
A012                       2            2000
A001                       1             800

Note: Outputs of the said SQL statement shown here is taken by using Oracle Database 10g Express Edition

Here is a slide presentation of all aggregate functions.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/sql/aggregate-functions/Max-having.php