w3resource

SQL SUM() function

SUM() function

The SQL AGGREGATE SUM() function returns the SUM of all selected column.

Syntax:

SUM ([ALL | DISTINCT] expression )

DBMS Support : SUM() function

DBMS Command
MySQL Supported
PostgreSQL Supported
SQL Server Supported
Oracle Supported

DB2 and Oracle Syntax :

 SUM ([ALL | DISTINCT] expression ) OVER (window_clause)

Parameters:

Name Description
ALL Applies to all values.
DISTINCT Return the SUM of unique values.
expression Expression made up of a single constant, variable, scalar function, or column name. The expression is an expression of the exact numeric or approximate numeric data type category, except for the bit data type. Aggregate functions and subqueries are not permitted.

Syntax diagram - SUM() function

Syntax diagram - SUM Function

SQL SUM() on specific column example

To get the total SUM of 'advance_amount' of the 'orders' table, the following SQL statement can be used :

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

SQL Code:

-- Calculating the sum of the 'advance_amount' column
-- From the 'orders' table
SELECT SUM(advance_amount)
-- Result: Total sum of 'advance_amount' in the 'orders' table
FROM orders;

Explanation:

  • SELECT SUM(advance_amount): This is the main part of the SQL query. It uses the SUM() function to calculate the sum of all values in the 'advance_amount' column of the 'orders' table. The result will be a single row with a single column containing the total sum of all advance amounts in the 'orders' table.
  • FROM orders: This specifies the source of the data for the query, which is the 'orders' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'orders' table.

Relational Algebra Expression:

Relational Algebra Expression: SQL SUM() on specific column example.

Relational Algebra Tree:

Relational Algebra Tree: SQL SUM() on specific column example.

Output:

SUM(ADVANCE_AMOUNT)
-------------------
              19450

Visual Presentation:

SQL SUM() function example

SQL SUM() using multiple columns example

To get the sum of 'opening_amt' and 'receive_amt' from the 'customer' table, the following SQL statement can be used:

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

SQL Code:


-- Calculating the sum of the sum of 'opening_amt' and 'receive_amt' columns
-- From the 'customer' table
SELECT SUM(opening_amt + receive_amt)
-- Result: Total sum of the sum of 'opening_amt' and 'receive_amt' in the 'customer' table
FROM customer;

Explanation:

  • SELECT SUM(opening_amt + receive_amt): This is the main part of the SQL query. It calculates the sum of the result of adding the 'opening_amt' and 'receive_amt' columns for each row in the 'customer' table using the SUM() function. The + operator is used to add the values of the 'opening_amt' and 'receive_amt' columns together. The result will be a single row with a single column containing the total sum of the calculated values for all rows in the 'customer' table.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'customer' table.

Relational Algebra Expression:

Relational Algebra Expression: SQL SUM() using multiple columns example.

Relational Algebra Tree:

Relational Algebra Tree: SQL SUM() using multiple columns example.

Output:

SUM(OPENING_AMT+RECEIVE_AMT)
----------------------------
                      353000

SQL SUM() with where

In the following example, we have discussed usage of WHERE clause along with the SQL SUM() function to sum one or more columns against one or more conditions.

Example:

To get the total SUM of 'advance_amount' of the 'orders' table with the following condition -

1. 'agent_code' must be 'A003',

the following SQL statement can be used :

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

SQL Code:

-- Calculating the sum of the 'advance_amount' column
-- From the 'orders' table
SELECT SUM(advance_amount)
-- Result: Total sum of 'advance_amount' in the 'orders' table
FROM orders
-- Filtering the results to include only rows where the 'agent_code' is equal to 'A003'
WHERE agent_code = 'A003';

Explanation:

  • SELECT SUM(advance_amount): This is the main part of the SQL query. It uses the SUM() function to calculate the sum of all values in the 'advance_amount' column of the 'orders' table. The result will be a single row with a single column containing the total sum of all advance amounts in the 'orders' table.
  • FROM orders: This specifies the source of the data for the query, which is the 'orders' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'orders' table.
  • WHERE agent_code = 'A003': This clause filters the rows from the 'orders' table. It restricts the calculation of the sum to only include rows where the value in the 'agent_code' column is 'A003'. This condition ensures that only orders handled by the agent with code 'A003' are considered in the sum calculation.

Relational Algebra Expression:

Relational Algebra Expression: SQL SUM() with where.

Relational Algebra Tree:

Relational Algebra Tree: SQL SUM() with where.

Output:

SUM(ADVANCE_AMOUNT)
-------------------
               1000

SQL SUM() with COUNT()

In the following example, we have discussed the usage of SQL SUM() and SQL COUNT() together in a SQL SELECT statement. Regarding this, it should be mentioned that the SQL SUM() and SQL COUNT() both returns a single row.

Example:

To get data of 'cust_country',SUM of 'opening_amt' for each 'cust_country' and number of 'cust_country' from the 'customer' table with the following condition -

1. data should be a group on 'cust_country',

the following SQL statement can be used :

Sample table: customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

SQL Code:

-- Selecting columns: cust_country, SUM(opening_amt), COUNT(cust_country)
-- From the 'customer' table
SELECT cust_country, SUM(opening_amt), COUNT(cust_country)
-- Grouping the results by the 'cust_country' column
-- Result: Sum of 'opening_amt' and count of occurrences for each 'cust_country'
FROM customer
GROUP BY cust_country;

Explanation:

  • SELECT cust_country, SUM(opening_amt), COUNT(cust_country): This is the main part of the SQL query. It selects the 'cust_country' column from the 'customer' table and calculates the sum of 'opening_amt' for each country using the SUM() function. Additionally, it counts the occurrences of each country using the COUNT() function applied to the 'cust_country' column. The result will include three columns: 'cust_country', the sum of 'opening_amt' for each country, and the count of occurrences of each country.
  • FROM customer: This specifies the source of the data for the query, which is the 'customer' table. The FROM keyword is used to indicate the table from which the data will be selected. In this case, it selects data from the 'customer' table.
  • GROUP BY cust_country: This clause groups the result set by the 'cust_country' column. The GROUP BY clause is used with aggregate functions like SUM() and COUNT() to divide the rows returned from the SELECT statement into groups based on the values in one or more columns. In this case, it groups the rows based on the values in the 'cust_country' column.

Relational Algebra Expression:

Relational Algebra Expression: SQL SUM() with COUNT().

Relational Algebra Tree:

Relational Algebra Tree: SQL SUM() with COUNT().

Output:

CUST_COUNTRY         SUM(OPENING_AMT) COUNT(CUST_COUNTRY)
-------------------- ---------------- -------------------
USA                             18000                   4
India                           73000                  10
Australia                       19000                   3
Canada                          25000                   3
UK                              26000                   5

Note: Outputs of the said SQL statement shown here is taken by using Oracle Database 10g Express Edition

Here is a slide presentation of all aggregate functions.

Check out our 1000+ SQL Exercises with solution and explanation to improve your skills.

Previous: COUNT Having and Group by
Next: SUM using GROUP BY



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/sql/aggregate-functions/sum-function.php