w3resource

Pandas Series: rpow() function

Exponential power of Pandas series

The rpow() function is used to get exponential power of series and other, element-wise (binary operator rpow).

Syntax:

Series.rpow(self, other, level=None, fill_value=None, axis=0)[source]
Pandas Series rpow() function

Parameters:

Name Description Type/Default Value Required / Optional
other   Series or scalar value Required
fill_value Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing. None or float value
Default Value: None (NaN)
Required
level Broadcast across a level, matching Index values on the passed MultiIndex level. int or name Required

Returns: Series
The result of the operation.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
x = pd.Series([3, 2, 1, np.nan], index=['p', 'q', 'r', 's'])
x

Output:

p    3.0
q    2.0
r    1.0
s    NaN
dtype: float64
Pandas Series rpow() function

Python-Pandas Code:

import numpy as np
import pandas as pd
y = pd.Series([3, np.nan, 2, np.nan], index=['p', 'q', 's', 't'])
y

Output:

p    3.0
q    NaN
s    2.0
t    NaN
dtype: float64
Pandas Series rpow() function

Python-Pandas Code:

import numpy as np
import pandas as pd
x = pd.Series([3, 2, 1, np.nan], index=['p', 'q', 'r', 's'])
y = pd.Series([3, np.nan, 2, np.nan], index=['p', 'q', 's', 't'])
x.rpow(y, fill_value=0)

Output:

p    27.0
q     0.0
r     0.0
s     1.0
t     NaN
dtype: float64

Previous: Modulo of Pandas series and other
Next: Combine the Series with a Series in Pandas



Follow us on Facebook and Twitter for latest update.