Pandas Series: rmul() function
Multiplication of Pandas series and other, element-wise
The rmul() function is used to get multiplication of series and other, element-wise (binary operator rmul).
Syntax:
Series.rmul(self, other, level=None, fill_value=None, axis=0)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
other | Series or scalar value | Required | |
fill_value | Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing. | None or float value Default Value: None (NaN) |
Required |
level | Broadcast across a level, matching Index values on the passed MultiIndex level. | int or name | Required |
Returns: Series
The result of the operation.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
x = pd.Series([1, 2, 1, np.nan], index=['p', 'q', 'r', 's'])
x
Output:
p 1.0 q 2.0 r 1.0 s NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
y = pd.Series([2, np.nan, 2, np.nan], index=['p', 'q', 's', 't'])
y
Output:
p 2.0 q NaN s 2.0 t NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
x = pd.Series([1, 2, 1, np.nan], index=['p', 'q', 'r', 's'])
y = pd.Series([2, np.nan, 2, np.nan], index=['p', 'q', 's', 't'])
x.rmul(y, fill_value=0)
Output:
p 2.0 q 0.0 r 0.0 s 0.0 t NaN dtype: float64
Previous: Element-wise subtraction of series and other in Pandas
Next: Floating division of Pandas series
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics