Pandas Series: rdiv() function
Floating division of Pandas series
The rdiv() function is used to get floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to other / series, but with support to substitute a fill_value for missing data in one of the inputs.
Syntax:
Series.rdiv(self, other, level=None, fill_value=None, axis=0)[source]
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
other | Series or scalar value | Required | |
fill_value | Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing. | None or float value Default Value: None (NaN) |
Required |
level | Broadcast across a level, matching Index values on the passed MultiIndex level. | int or name | Required |
Returns: Series
The result of the operation.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
x = pd.Series([2, 2, 2, np.nan], index=['p', 'q', 'r', 's'])
x
Output:
p 2.0 q 2.0 r 2.0 s NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
y = pd.Series([1, 1, 1, np.nan], index=['p', 'q', 's', 't'])
y
Output:
p 1.0 q 1.0 s 1.0 t NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
x = pd.Series([2, 2, 2, np.nan], index=['p', 'q', 'r', 's'])
y = pd.Series([1, 1, 1, np.nan], index=['p', 'q', 's', 't'])
x.rdiv(y, fill_value=0)
Output:
p 0.5 q 0.5 r 0.0 s inf t NaN dtype: float64
Previous: Multiplication of Pandas series and other, element-wise
Next: Floating division of series and other in Pandas
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-rdiv.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics