w3resource

Pandas Series: product() function

Product of the values for the requested Pandas axis

The product() function is used to get the product of the values for the requested axis.

Syntax:

Series.product(self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)

Parameters:

Name Description Type/Default Value Required / Optional
axis Axis for the function to be applied on. {index (0)} Required
skipna Exclude NA/null values when computing the result. bool
Default Value : True
Required
level If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. int or level name
Default Value: None
Required
numeric_only Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series bool
Default Value: None
Required
min_count The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
int
Default Value: 0
Required
kwargs Additional keyword arguments to be passed to the function.   Required

Returns: scalar or Series (if level specified)

Example - By default, the product of an empty or all-NA Series is 1:

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([]).prod()

Output:

1.0

Example - This can be controlled with the min_count parameter:

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([]).prod(min_count=1)

Output:

nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([np.nan]).prod()

Output:

1.0

Python-Pandas Code:

import numpy as np
import pandas as pd
pd.Series([np.nan]).prod(min_count=1)

Output:

nan

Previous: Round each value in Pandas Series
Next: Compute the dot product between the Series and the columns in Pandas



Follow us on Facebook and Twitter for latest update.