w3resource

NumPy: Array creation routines

Array creation routines

NumPy: numpy-logo
Ones and zeros
Name Description Syntax
empty() Return a new array of given shape and type, without initializing entries. numpy.empty(shape[, dtype, order])
empty_like Return a new array with the same shape and type as a given array. numpy.empty_like(a[, dtype, order, subok])
eye() Return a 2-D array with ones on the diagonal and zeros elsewhere. numpy.eye(N[, M, k, dtype])
identity() Return the identity array. numpy.identity(n[, dtype])
ones() Return a new array of given shape and type, filled with ones. numpy.ones(shape[, dtype, order])
ones_like Return an array of ones with the same shape and type as a given array. numpy.ones_like(a[, dtype, order, subok])
zeros Return a new array of given shape and type, filled with zeros. numpy.zeros(shape[, dtype, order])
zeros_like Return an array of zeros with the same shape and type as a given array. numpy.zeros_like(a[, dtype, order, subok])
full() Return a new array of given shape and type, filled with fill_value. numpy.full(shape, fill_value[, dtype, order])
full_like() Return a full array with the same shape and type as a given array. numpy.full_like(a, fill_value[, dtype, order, subok])

Pictorial Presentation: NumPy Array creation

NumPy: array creation
From existing data
Name Description Syntax
array() Create an array. numpy.array(object[, dtype, copy, order, subok, ndmin])
asarray() Convert the input to an array. numpy.asarray(a[, dtype, order])
asanyarray() Convert the input to an ndarray, but pass ndarray subclasses through. numpy.asanyarray(a[, dtype, order])
ascontiguousarray() Return a contiguous array in memory (C order). numpy.ascontiguousarray(a[, dtype])
asmatrix() Interpret the input as a matrix. numpy.asmatrix(data[, dtype])
copy() Return an array copy of the given object. numpy.copy(a[, order]
frombuffer() Interpret a buffer as a 1-dimensional array. numpy.frombuffer(buffer[, dtype, count, offset])
fromfile() Construct an array from data in a text or binary file. numpy.fromfile(file[, dtype, count, sep])
fromfunction() Construct an array by executing a function over each coordinate. numpy.fromfunction(function, shape, **kwargs)
fromiter() Create a new 1-dimensional array from an iterable object. numpy.fromiter(iterable, dtype[, count])
fromstring() A new 1-D array initialized from raw binary or text data in a string. numpy.fromstring(string[, dtype, count, sep])
loadtxt() Load data from a text file. numpy.loadtxt(fname[, dtype, comments, delimiter, ...])

Creating record arrays (numpy.rec)

Name Description Syntax
core.records.array() Construct a record array from a wide-variety of objects. core.defchararray.array(obj[, itemsize, ...])
core.records.fromarrays() create a record array from a (flat) list of arrays core.records.fromarrays(arrayList[, dtype, ...])
core.records.fromrecords() create a recarray from a list of records in text form. core.records.fromrecords(recList[, dtype, ...])
core.records.fromstring() create a (read-only) record array from binary data contained in a string. core.records.fromstring(datastring[, dtype, ...])
core.records.fromfile() Create an array from binary file data. core.records.fromfile(fd[, dtype, shape, ...])

Creating character arrays (numpy.char)

Name Description Syntax
core.defchararray.array() Create a chararray. core.defchararray.array(obj[, itemsize, ...])
core.defchararray.array() Convert the input to a chararray, copying the data only if necessary. core.defchararray.asarray(obj[, itemsize, ...])
Numerical ranges
Name Description Syntax
arange() Return evenly spaced values within a given interval. numpy.arange([start,] stop[, step,][, dtype])
linspace() Return evenly spaced numbers over a specified interval. numpy.linspace(start, stop[, num, endpoint, ...])
logspace() Return numbers spaced evenly on a log scale. numpy.logspace(start, stop[, num, endpoint, base, ...])
geomspace() Return numbers spaced evenly on a log scale (a geometric progression). numpy.geomspace(start, stop[, num, endpoint, dtype])
meshgrid() Return coordinate matrices from coordinate vectors. numpy.meshgrid(*xi, **kwargs)
mgrid() nd_grid instance which returns a dense multi-dimensional "meshgrid". numpy.mgrid
ogrid() nd_grid instance which returns an open multi-dimensional "meshgrid". numpy.ogrid
Building matrices
Name Description Syntax
diag() Extract a diagonal or construct a diagonal array. numpy.diag(v[, k])
diagflat() Create a two-dimensional array with the flattened input as a diagonal. numpy.diagflat(v[, k])
tri() An array with ones at and below the given diagonal and zeros elsewhere. numpy.tri(N[, M, k, dtype])
tril() Lower triangle of an array. numpy.tril(m[, k])
triu() Upper triangle of an array. numpy.triu(m[, k])
vander() Generate a Vandermonde matrix. numpy.vander(x[, N, increasing])
The Matrix class
Name Description Syntax
mat() Interpret the input as a matrix. numpy.mat(data[, dtype])
bmat() Build a matrix object from a string, nested sequence, or array. numpy.bmat(obj[, ldict, gdict])

Previous: NumPy ndarray
Next: Ones and Zeros empty()



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/numpy/array-creation/index.php