Pandas Series: update() function
Modify Pandas series in place using non-NA values
The update() function is used to modify series in place using non-NA values from passed Series.
Aligns on index.
Syntax:
Series.update(self, other)
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.update(pd.Series([5, 6, 7]))
s
Output:
0 5 1 6 2 7 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['p', 'q', 'r'])
s.update(pd.Series(['s', 't'], index=[0, 2]))
s
Output:
0 s 1 q 2 t dtype: object
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([2, 3, 4])
s.update(pd.Series([5, 6, 7, 8, 9]))
s
Output:
0 5 1 6 2 7 dtype: int64
Example - If other contains NaNs the corresponding values are not updated in the original Series:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([1, 2, 3])
s.update(pd.Series([6, np.nan, 8]))
s
Output:
0 6 1 2 2 8 dtype: int64
Previous: Replace Pandas series values given in to_replace with value
Next: Convert Pandas TimeSeries to specified frequency
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics