Pandas Series: replace() function
Replace Pandas series values given in to_replace with value
The replace() function is used to replace values given in to_replace with value.
Values of the Series are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value.
Syntax:
Series.replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
to_replace | Values that will be replaced.
|
str, regex, list, dict, Series, int, float, or None | Required |
value | Value to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. | scalar, dict, list, str, regex Default Value: None |
Required |
inplace | If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True. | bool Default Value: False |
Required |
limit | Maximum size gap to forward or backward fill. | int Default Value: None |
Required |
regex | Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None. | bool or same types as to_replace Default Value: False |
Required |
method | The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None. | {‘pad’, ‘ffill’, ‘bfill’, None} | Required |
Returns: Series - Object after replacement.
Raises:
AssertionError
- If regex is not a bool and to_replace is not None.
TypeError
- If to_replace is a dict and value is not a list, dict, ndarray, or Series
- If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.
- When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced
ValueError
- If a list or an ndarray is passed to to_replace and value but they are not the same length.
Example - Scalar 'to_replace' and 'value':
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([0, 2, 3, 4, 5])
s.replace(0, 6)
Output:
0 6 1 2 2 3 3 4 4 5 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace(0, 5)
Output:
X Y Z 0 5 6 p 1 2 7 q 2 3 8 r 3 4 9 s 4 5 1 t
Example - List-like 'to_replace':
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace([0, 2, 3, 4], 5)
Output:
X Y Z 0 5 6 p 1 5 7 q 2 5 8 r 3 5 9 s 4 5 1 t
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace([0, 2, 3, 4], [4, 3, 2, 1])
Output:
X Y Z 0 4 6 p 1 3 7 q 2 2 8 r 3 1 9 s 4 5 1 t
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([0, 2, 3, 4, 5])
s.replace([2, 3], method='bfill')
Output:
0 0 1 4 2 4 3 4 4 5 dtype: int64
Example - dict-like 'to_replace':
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace({0: 20, 1: 80})
Output:
X Y Z 0 20 6 p 1 2 7 q 2 3 8 r 3 4 9 s 4 5 80 t
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace({'X': 0, 'Y': 6}, 80)
Output:
X Y Z 0 80 80 p 1 2 7 q 2 3 8 r 3 4 9 s 4 5 1 t
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [0, 2, 3, 4, 5],
'Y': [6, 7, 8, 9, 1],
'Z': ['p', 'q', 'r', 's', 't']})
df.replace({'X': {0: 100, 3: 200}})
Output:
X Y Z 0 100 6 p 1 2 7 q 2 200 8 r 3 4 9 s 4 5 1 t
Example - Regular expression 'to_replace':
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['bbb', 'fff', 'bii'],
'Y': ['abc', 'brr', 'pqr']})
df.replace(to_replace=r'^ba.$', value='new', regex=True)
Output:
X Y 0 bbb abc 1 fff brr 2 bii pqr
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['bbb', 'fff', 'bii'],
'Y': ['abc', 'brr', 'pqr']})
df.replace({'X': r'^ba.$'}, {'X': 'new'}, regex=True)
Output:
X Y 0 bbb abc 1 fff brr 2 bii pqr
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['bbb', 'fff', 'bii'],
'Y': ['abc', 'brr', 'pqr']})
df.replace(regex=r'^ba.$', value='new')
Output:
X Y 0 bbb abc 1 fff brr 2 bii pqr
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['bbb', 'fff', 'bii'],
'Y': ['abc', 'brr', 'pqr']})
df.replace(regex={r'^ba.$': 'new', 'fff': 'pqr'})
Output:
X Y 0 bbb abc 1 pqr brr 2 bii pqr
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': ['bbb', 'fff', 'bii'],
'Y': ['abc', 'brr', 'pqr']})
df.replace(regex=[r'^ba.$', 'fff'], value='new')
Output:
X Y 0 bbb abc 1 new brr 2 bii pqr
Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace parameter must match the data type of the value being replaced:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'X': [True, False, True],
'Y': [False, True, False]})
df.replace({'a string': 'new value', True: False}) # raises Traceback (most recent call last): ... TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'
This raises a TypeError because one of the dict keys is not of the correct type for replacement.
Compare the behavior of s.replace({'p': None}) and s.replace('p', None) to understand the peculiarities of the to_replace parameter:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([10, 'p', 'p', 'q', 'p'])
When one uses a dict as the to_replace value, it is like the value(s) in the dict are equalto the value parameter.
Example - s.replace({'p': None}) is equivalent to s.replace(to_replace={'p': None}, value=None, method=None):
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([10, 'p', 'p', 'q', 'p'])
s.replace({'p': None})
Output:
0 10 1 None 2 None 3 q 4 None dtype: object
When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘p’ values are being replaced by 10 in rows 1 and 2 and ‘q’ in row 4 in this case.
Example - The command s.replace('p', None) is actually equivalent to s.replace(to_replace='p', value=None, method='pad'):
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([10, 'p', 'p', 'q', 'p'])
s.replace('p', None)
Output:
0 10 1 10 2 10 3 q 4 q dtype: object
Previous: Concatenate two or more Pandas series
Next: Modify Pandas series in place using non-NA values
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics