Pandas Series: append() function
Concatenate two or more Pandas series
The append() function is used to concatenate two or more Series.
Syntax:
Series.append(self, to_append, ignore_index=False, verify_integrity=False)
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
to_append | Series to append with self. | Series or list/tuple of Series | Required |
ignore_index | If True, do not use the index labels. | bool Default Value: False |
Required |
verify_integrity | If True, raise Exception on creating index with duplicates. | bool Default Value: False |
Required |
Returns: Series - Concatenated Series.
Notes:
Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s1 = pd.Series([2, 3, 4])
s2 = pd.Series([5, 6, 7])
s3 = pd.Series([5, 6, 7], index=[4, 5, 6])
s1.append(s2)
Output:
0 2 1 3 2 4 0 5 1 6 2 7 dtype: int64
Python-Pandas Code:
import numpy as np
import pandas as pd
s1 = pd.Series([2, 3, 4])
s2 = pd.Series([5, 6, 7])
s3 = pd.Series([5, 6, 7], index=[4, 5, 6])
s1.append(s3)
Output:
0 2 1 3 2 4 4 5 5 6 6 7 dtype: int64
Example - With ignore_index set to True:
Python-Pandas Code:
import numpy as np
import pandas as pd
s1 = pd.Series([2, 3, 4])
s2 = pd.Series([5, 6, 7])
s3 = pd.Series([5, 6, 7], index=[4, 5, 6])
s1.append(s2, ignore_index=True)
Output:
0 2 1 3 2 4 3 5 4 6 5 7 dtype: int64
With verify_integrity set to True:
s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2]
Previous: Create a new view of Pandas Series
Next: Replace Pandas series values given in to_replace with value
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics