Pandas Series: dt.to_pydatetime() function
Series.dt.to_pydatetime() function
The to_pydatetime() function is used to get the data as an array of native Python datetime objects.
Timezone information is retained if present.
Syntax:
Series.dt.to_pydatetime(self)
Returns: numpy.ndarray
Object dtype array containing native Python datetime objects.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(pd.date_range('20190210', periods=2))
s
Output:
0 2019-02-10 1 2019-02-11 dtype: datetime64[ns]
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(pd.date_range('20190210', periods=2))
s.dt.to_pydatetime()
Output:
array([datetime.datetime(2019, 2, 10, 0, 0), datetime.datetime(2019, 2, 11, 0, 0)], dtype=object)
Example - pandas’ nanosecond precision is truncated to microseconds:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(pd.date_range('20190210', periods=2, freq='ns'))
s
Output:
0 2019-02-10 00:00:00.000000000 1 2019-02-10 00:00:00.000000001 dtype: datetime64[ns]
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(pd.date_range('20190210', periods=2, freq='ns'))
s.dt.to_pydatetime()
Output:
array([datetime.datetime(2019, 2, 10, 0, 0), datetime.datetime(2019, 2, 10, 0, 0)], dtype=object)
Previous: Series.dt.to_period() function
Next: Series.dt.tz_localize() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics