Pandas Series: dt.normalize() function
Series.dt.normalize() function
The dt.normalize() function is used to convert times to midnight.
The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected.
Syntax:
Series.dt.normalize(self, *args, **kwargs)
Returns: DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
idx = pd.date_range(start='2019-08-01 10:00', freq='H',
periods=3, tz='Asia/Calcutta')
idx
Output:
DatetimeIndex(['2019-08-01 10:00:00+05:30', '2019-08-01 11:00:00+05:30', '2019-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H')
Python-Pandas Code:
import numpy as np
import pandas as pd
idx = pd.date_range(start='2019-08-01 10:00', freq='H',
periods=3, tz='Asia/Calcutta')
idx.normalize()
Output:
DatetimeIndex(['2019-08-01 00:00:00+05:30', '2019-08-01 00:00:00+05:30', '2019-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None)
Previous: Series.dt.tz_convert() function
Next: Series.dt.strftime() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics