Pandas Series: dt.strftime() function
Series.dt.strftime() function
The dt.strftime() function is used to convert to Index using specified date_format.
Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library.
Syntax:
Series.dt.strftime(self, *args, **kwargs)
Parameter:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
date_format | Date format string (e.g. "%Y-%m-%d"). | str | Required |
Returns: DatetimeArray, DatetimeIndex or Series
The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
rng = pd.date_range(pd.Timestamp("2019-04-10 09:00"),
periods=3, freq='s')
rng.strftime('%B %d, %Y, %r')
Output:
Index(['April 10, 2019, 09:00:00 AM', 'April 10, 2019, 09:00:01 AM', 'April 10, 2019, 09:00:02 AM'], dtype='object')
Previous: Series.dt.normalize() function
Next: Series.dt.round() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-dt-strftime.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics