Pandas DataFrame: sum() function
DataFrame - sum() function
The sum() function is used to get the sum of the values for the requested axis.
This is equivalent to the method numpy.sum.
Syntax:
DataFrame.sum(self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | Axis for the function to be applied on. |
{index (0), columns (1)} | Required |
|
Exclude NA/null values when computing the result. |
bool Default Value: True |
Required |
level | If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. | int or level name Default Value: None |
Required |
numeric_only | Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. | bool Default Value: None |
Required |
min_count | The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. | int Default Value: 0 |
Required |
|
Additional keyword arguments to be passed to the function. | Required |
Returns: Series or DataFrame (if level specified)
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - round() function
Next: DataFrame - nunique() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics