Pandas DataFrame: all() function
DataFrame - all() function
The all() function is used to check whether all elements are True, potentially over an axis.
Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).
Syntax:DataFrame.all(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | Indicate which axis or axes should be reduced.
|
{0 or 'index', 1 or 'columns', None} Default Value: 0 |
Required |
bool_only | Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. | bool Default Value: None |
Required |
skipna | Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. | bool Default Value: True |
Required |
level | If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. | int or level name Default Value: None |
Required |
**kwargs | Additional keywords have no effect but might be accepted for compatibility with NumPy. | any Default Value: None |
Required |
Returns:Series or DataFrame
If level is specified, then, DataFrame is returned; otherwise, Series is returned.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - abs() function
Next: DataFrame - any() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics