Pandas DataFrame: min() function
DataFrame - min() function
The min() function returns the minimum of the values for the requested axis.
If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.
Syntax:
DataFrame.min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
axis | Axis for the function to be applied on. | {index (0), columns (1)} | Required |
skipna | Exclude NA/null values when computing the result. | bool Default Value: True |
Required |
level | If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. | int or level name Default Value: None |
Required |
numeric_only | Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. | bool Default Value: None |
Required |
**kwargs | Additional keyword arguments to be passed to the function. | Required |
Returns:Series or DataFrame (if level specified)
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - max() function
Next: DataFrame - mode() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics