Pandas DataFrame: set_index() function
DataFrame - set_index() function
The set_index() function is used to set the DataFrame index using existing columns.
Set the DataFrame index (row labels) using one or more existing columns or arrays of the correct length. The index can replace the existing index or expand on it.
Syntax:
DataFrame.set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False)
Parameters:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
keys | This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, “array” encompasses Series,Index, np.ndarray, and instances of Iterator. | label or array-like or list of labels/arrays | Required |
drop | Delete columns to be used as the new index. | bool Default Value: True |
Required |
append | Whether to append columns to existing index. | bool Default Value: False |
Required |
inplace | Modify the DataFrame in place (do not create a new object). | bool Default Value: False |
Required |
verify_integrity | Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. | bool Default Value: False |
Required |
Returns: DataFrame
Changed row labels.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - set_axis() function
Next: DataFrame - take() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics