Pandas DataFrame: drop() function
DataFrame - drop() function
The drop() function is used to drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.
Syntax:
DataFrame.drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
labels | Index or column labels to drop. |
single label or list-like | Required |
axis | Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’). | {0 or ‘index’, 1 or ‘columns’} Default Value: 0 |
Required |
index | Alternative to specifying axis (labels, axis=0 is equivalent to index=labels). | single label or list-like | Required |
columns | Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels). | single label or list-like | Required |
level | For MultiIndex, level from which the labels will be removed. | int or level name | Optional |
inplace | If True, do operation inplace and return None. | bool Default Value: False |
Required |
errors | If ‘ignore’, suppress error and only existing labels are dropped. | {‘ignore’, ‘raise’} Default Value: ‘raise’ |
Required |
Returns: DataFrame
DataFrame without the removed index or column labels.
Raises: KeyError
If any of the labels is not found in the selected axis.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - between_time() function
Next: DataFrame - equals() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics