Pandas DataFrame: rename() function
DataFrame - rename() function
The rename() function is used to alter axes labels.
Syntax:
DataFrame.rename(self, mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None, errors='ignore')
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
Parameters:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
mapper | Dict-like or functions transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index and columns. | dict-like or function | Required |
index | Alternative to specifying axis (mapper, axis=0 is equivalent to index=mapper). | dict-like or function | Required |
columns | Alternative to specifying axis (mapper, axis=1 is equivalent to columns=mapper). | dict-like or function | Required |
axis | Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’. | int or str | Required |
copy | Also copy underlying data | bool Default Value: True |
Required |
inplace | Whether to return a new DataFrame. If True then value of copy is ignored. | bool Default Value: False |
Required |
level | In case of a MultiIndex, only rename labels in the specified level. | int or level name Default Value: None |
Required |
errors | If ‘raise’, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. If ‘ignore’, existing keys will be renamed and extra keys will be ignored. | {‘ignore’, ‘raise’} Default Value: ‘ignore’ |
Required |
Returns: DataFrame
DataFrame with the renamed axis labels.
Raises: KeyError
If any of the labels is not found in the selected axis and “errors=’raise’”.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - reindex_like() function
Next: DataFrame - rename_axis() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics