NumPy: numpy.asarray() function
numpy.asarray() function
The numpy.asarray() function is used to convert n given input to an array.
Syntax:
numpy.asarray(a, dtype=None, order=None)
Parameters:
Name | Description | Required / Optional |
---|---|---|
a | Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. | Required |
dtype | By default, the data-type is inferred from the input data. | Optional |
order | Whether to use row-major (C-style) or column-major (Fortranstyle) memory representation. Defaults to 'C'. | Optional |
Return value:
out [ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.
Raises: ValueError - If axis is not None, and an axis being squeezed is not of length 1
Example-1: numpy.asarray()
>>> import numpy as np
>>> a = [3, 5]
>>> np.array(a)
array([3, 5])
>>> a = np.asarray([3, 5])
>>> np.asarray(a) is a
True
Pictorial Presentation:
Example-2: numpy.asarray()
>>> import numpy as np
>>> x = np.array([3, 5], dtype=np.float32)
>>> np.asarray(x, dtype=np.float32) is x
True
>>> np.asarray(x, dtype=np.float64) is a
False
>>> issubclass(np.recarray, np.ndarray)
True
>>> x = np.array([(2.0, 3), (4.0, 5)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(x) is a
False
>>> np.asanyarray(x) is x
True
Python - NumPy Code Editor:
Previous: squeeze()
Next: asanyarray()
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics