w3resource

SQL: Multiple Row and Column Subqueries

Multiple Row Subqueries

Multiple row subquery returns one or more rows to the outer SQL statement. You may use the IN, ANY, or ALL operator in outer query to handle a subquery that returns multiple rows.

Contents:

SQL: Using IN operator with a Multiple Row Subquery

IN operator is used to checking a value within a set of values. The list of values may come from the results returned by a subquery. See the following example :

To get 'ord_num', 'ord_amount', 'ord_date', 'cust_code' and 'agent_code' from the table 'orders' with following conditions:

Sample table : agents
 
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+
Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

in the outer query:
'agent_code' of 'orders' table must be in the list within IN operator in inner query :

in inner query:
'working_area' of 'agents' table must be 'Bangalore',

Here is the complete SQL statement :

SQL Code:

-- Selecting specific columns from the orders table
SELECT ord_num, ord_amount, ord_date,
       cust_code, agent_code
-- Filtering orders based on agent_code
FROM orders
-- Subquery to find agent_codes working in Bangalore
WHERE agent_code IN (
    -- Selecting agent_codes from agents table
    SELECT agent_code 
    -- Filtering agents based on working_area
    FROM agents
    WHERE working_area='Bangalore'
);

Explanation:

  • This SQL query retrieves specific columns from the "orders" table.

  • It filters the orders based on the agent_code.

  • The subquery is used to find agent_codes of agents who work in Bangalore.

  • It first selects the agent_codes from the "agents" table.

  • Then it filters these agents based on their working_area being 'Bangalore'.

  • The main query then selects orders where the agent_code matches those found in the subquery, meaning it selects orders handled by agents working in Bangalore.

Output:

   ORD_NUM ORD_AMOUNT ORD_DATE  CUST_CODE  AGENT_CODE
---------- ---------- --------- ---------- ----------
    200130       2500 30-JUL-08 C00025     A011
    200105       2500 18-JUL-08 C00025     A011
    200117        800 20-OCT-08 C00014     A001
    200124        500 20-JUN-08 C00017     A007
    200112       2000 30-MAY-08 C00016     A007

Let's break the above query and analyze what's going on in inner query. Here is the code of inner query :

SQL Code:

-- Selecting the agent_code column from the agents table
SELECT agent_code
-- Filtering agents based on their working_area
FROM agents
-- Specifying the condition for filtering
WHERE working_area='Bangalore';

Explanation:

  • This SQL query retrieves the agent_code from the "agents" table.

  • It filters the agents based on their working_area.

  • The condition specified in the WHERE clause restricts the results to only those agents whose working_area is 'Bangalore'.

Relational Algebra Expression:

Relational Algebra Expression: Using IN operator with a Multiple Row Subquery.

Relational Algebra Tree:

Relational Algebra Tree: Using IN operator with a Multiple Row Subquery.

Output:

AGENT_CODE
----------
A001
A007
A011

The above query returns two agent codes 'A011' and 'A001'.

Visual Presentation:

SQL: Using IN operator with a Multiple Row Subquery

SQL: Using NOT IN operator with a Multiple Row Subquery

You can also use NOT IN operator to perform the logical opposite of IN operator. See the following example :

Sample table : agents
 
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+
Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To get 'ord_num', 'ord_amount', 'ord_date', 'cust_code' and 'agent_code' from the table 'orders' with following conditions :

in outer query:
 'agent_code' of 'orders' table must be other than the list within IN operator.

in inner query :
'working_area' of 'agents' table must be 'Mumbai'

Here is the complete SQL statement :

SQL Code:

-- Selecting specific columns from the orders table
SELECT ord_num, ord_amount, ord_date,
       cust_code, agent_code
-- Filtering orders based on agent_code
FROM orders
-- Filtering out orders handled by agents in Bangalore
WHERE agent_code NOT IN (
    -- Selecting agent_codes from agents table
    SELECT agent_code 
    -- Filtering agents based on working_area
    FROM agents
    WHERE working_area='Bangalore'
);

Explanation:

  • This SQL query retrieves specific columns from the "orders" table.

  • It filters the orders based on the agent_code.

  • The subquery is used to find agent_codes of agents who work in Bangalore.

  • It first selects the agent_codes from the "agents" table.

  • Then it filters these agents based on their working_area being 'Bangalore'.

  • The main query then selects orders where the agent_code does not match those found in the subquery, meaning it selects orders handled by agents who do not work in Bangalore.

Output:

  ORD_NUM ORD_AMOUNT ORD_DATE  CUST_CODE  AGENT_CO
--------- ---------- --------- ---------- --------
   200129       2500 20-JUL-08 C00024     A006
   200118        500 20-JUL-08 C00023     A006
   200111       1000 10-JUL-08 C00020     A008
   200101       3000 15-JUL-08 C00001     A008
   200114       3500 15-AUG-08 C00002     A008
   200100       1000 08-JAN-08 C00015     A003
   200127       2500 20-JUL-08 C00015     A003
   200113       4000 10-JUN-08 C00022     A002
   200133       1200 29-JUN-08 C00009     A002
   200128       3500 20-JUL-08 C00009     A002
   200126        500 24-JUN-08 C00022     A002
   200120        500 20-JUL-08 C00009     A002
   200123        500 16-SEP-08 C00022     A002
   200106       2500 20-APR-08 C00005     A002
   200116        500 13-JUL-08 C00010     A009
   200132       4000 15-AUG-08 C00013     A013
   200115       2000 08-FEB-08 C00013     A013
   200125       2000 10-OCT-08 C00018     A005
   200103       1500 15-MAY-08 C00021     A005
   200134       4200 25-SEP-08 C00004     A005
.........
.........

Let's break the above query and analyze what's going on in inner query. Here is the code of inner query :

SQL Code:

SELECT agent_code FROM agents
WHERE working_area='Bangalore';

Relational Algebra Expression:

Relational Algebra Expression: Using IN operator with a Multiple Row Subquery.

Relational Algebra Tree:

Relational Algebra Tree: Using IN operator with a Multiple Row Subquery.

Output:

AGENT_CODE
----------
A001
A007
A011

Visual Presentation:

SQL: Using NOT IN operator with a Multiple Row Subquery

SQL: Using ANY with a Multiple Row Subquery

You can use the ANY operator to compare a value with any value in a list. You must place an =, <>, >, <, <= or >= operator before ANY in your query. The following example uses ANY to check if any of the agent who belongs to the country 'UK'.

Sample table : agents
 
+------------+----------------------+--------------------+------------+-----------------+---------+
| AGENT_CODE | AGENT_NAME           | WORKING_AREA       | COMMISSION | PHONE_NO        | COUNTRY |
+------------+----------------------+--------------------+------------+-----------------+---------+
| A007       | Ramasundar           | Bangalore          |       0.15 | 077-25814763    |         |
| A003       | Alex                 | London             |       0.13 | 075-12458969    |         |
| A008       | Alford               | New York           |       0.12 | 044-25874365    |         |
| A011       | Ravi Kumar           | Bangalore          |       0.15 | 077-45625874    |         |
| A010       | Santakumar           | Chennai            |       0.14 | 007-22388644    |         |
| A012       | Lucida               | San Jose           |       0.12 | 044-52981425    |         |
| A005       | Anderson             | Brisban            |       0.13 | 045-21447739    |         |
| A001       | Subbarao             | Bangalore          |       0.14 | 077-12346674    |         |
| A002       | Mukesh               | Mumbai             |       0.11 | 029-12358964    |         |
| A006       | McDen                | London             |       0.15 | 078-22255588    |         |
| A004       | Ivan                 | Torento            |       0.15 | 008-22544166    |         |
| A009       | Benjamin             | Hampshair          |       0.11 | 008-22536178    |         |
+------------+----------------------+--------------------+------------+-----------------+---------+
Sample table : customer
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+  
|CUST_CODE  | CUST_NAME   | CUST_CITY   | WORKING_AREA | CUST_COUNTRY | GRADE | OPENING_AMT | RECEIVE_AMT | PAYMENT_AMT |OUTSTANDING_AMT| PHONE_NO     | AGENT_CODE |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+
| C00013    | Holmes      | London      | London       | UK           |     2 |     6000.00 |     5000.00 |     7000.00 |       4000.00 | BBBBBBB      | A003       |
| C00001    | Micheal     | New York    | New York     | USA          |     2 |     3000.00 |     5000.00 |     2000.00 |       6000.00 | CCCCCCC      | A008       |
| C00020    | Albert      | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     6000.00 |       6000.00 | BBBBSBB      | A008       |
| C00025    | Ravindran   | Bangalore   | Bangalore    | India        |     2 |     5000.00 |     7000.00 |     4000.00 |       8000.00 | AVAVAVA      | A011       |
| C00024    | Cook        | London      | London       | UK           |     2 |     4000.00 |     9000.00 |     7000.00 |       6000.00 | FSDDSDF      | A006       |
| C00015    | Stuart      | London      | London       | UK           |     1 |     6000.00 |     8000.00 |     3000.00 |      11000.00 | GFSGERS      | A003       |
| C00002    | Bolt        | New York    | New York     | USA          |     3 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | DDNRDRH      | A008       |
| C00018    | Fleming     | Brisban     | Brisban      | Australia    |     2 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | NHBGVFC      | A005       |
| C00021    | Jacks       | Brisban     | Brisban      | Australia    |     1 |     7000.00 |     7000.00 |     7000.00 |       7000.00 | WERTGDF      | A005       |
| C00019    | Yearannaidu | Chennai     | Chennai      | India        |     1 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | ZZZZBFV      | A010       |
| C00005    | Sasikant    | Mumbai      | Mumbai       | India        |     1 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | 147-25896312 | A002       |
| C00007    | Ramanathan  | Chennai     | Chennai      | India        |     1 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | GHRDWSD      | A010       |
| C00022    | Avinash     | Mumbai      | Mumbai       | India        |     2 |     7000.00 |    11000.00 |     9000.00 |       9000.00 | 113-12345678 | A002       |
| C00004    | Winston     | Brisban     | Brisban      | Australia    |     1 |     5000.00 |     8000.00 |     7000.00 |       6000.00 | AAAAAAA      | A005       |
| C00023    | Karl        | London      | London       | UK           |     0 |     4000.00 |     6000.00 |     7000.00 |       3000.00 | AAAABAA      | A006       |
| C00006    | Shilton     | Torento     | Torento      | Canada       |     1 |    10000.00 |     7000.00 |     6000.00 |      11000.00 | DDDDDDD      | A004       |
| C00010    | Charles     | Hampshair   | Hampshair    | UK           |     3 |     6000.00 |     4000.00 |     5000.00 |       5000.00 | MMMMMMM      | A009       |
| C00017    | Srinivas    | Bangalore   | Bangalore    | India        |     2 |     8000.00 |     4000.00 |     3000.00 |       9000.00 | AAAAAAB      | A007       |
| C00012    | Steven      | San Jose    | San Jose     | USA          |     1 |     5000.00 |     7000.00 |     9000.00 |       3000.00 | KRFYGJK      | A012       |
| C00008    | Karolina    | Torento     | Torento      | Canada       |     1 |     7000.00 |     7000.00 |     9000.00 |       5000.00 | HJKORED      | A004       |
| C00003    | Martin      | Torento     | Torento      | Canada       |     2 |     8000.00 |     7000.00 |     7000.00 |       8000.00 | MJYURFD      | A004       |
| C00009    | Ramesh      | Mumbai      | Mumbai       | India        |     3 |     8000.00 |     7000.00 |     3000.00 |      12000.00 | Phone No     | A002       |
| C00014    | Rangarappa  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | AAAATGF      | A001       |
| C00016    | Venkatpati  | Bangalore   | Bangalore    | India        |     2 |     8000.00 |    11000.00 |     7000.00 |      12000.00 | JRTVFDD      | A007       |
| C00011    | Sundariya   | Chennai     | Chennai      | India        |     3 |     7000.00 |    11000.00 |     7000.00 |      11000.00 | PPHGRTS      | A010       |
+-----------+-------------+-------------+--------------+--------------+-------+-------------+-------------+-------------+---------------+--------------+------------+

To get 'agent_code', 'agent_name', 'working_area', 'commission' from 'agents' table with following conditions -

in outer query:
'agent_code' should be any 'agent_code' from 'customer' table

in inner query:
)
'cust_country' in the 'customer' table must be 'UK',

Here is the complete SQL statement :

SQL Code:

-- Selecting specific columns from the agents table
SELECT agent_code, agent_name, working_area, commission
-- Filtering agents based on agent_code
FROM agents
-- Filtering agents whose agent_code matches any in the subquery
WHERE agent_code = ANY (
    -- Selecting agent_codes from customer table
    SELECT agent_code 
    -- Filtering customers based on cust_country
    FROM customer
    WHERE cust_country='UK'
);

Explanation:

  • This SQL query retrieves specific columns from the "agents" table.

  • It filters the agents based on the agent_code.

  • The subquery is used to find agent_codes of agents who have customers in the UK.

  • It first selects the agent_codes from the "customer" table.

  • Then it filters these customers based on their cust_country being 'UK'.

  • The main query then selects agents whose agent_code matches any of those found in the subquery, meaning it selects agents who have customers in the UK.

Output:

AGENT_CODE AGENT_NAME                               WORKING_AREA                        COMMISSION
---------- ---------------------------------------- ----------------------------------- ----------
A009       Benjamin                                 Hampshair                                  .11
A003       Alex                                     London                                     .13
A006       McDen                                    London                                     .15

Visual Presentation:

SQL: Using ANY with a Multiple Row Subquery

SQL: Multiple Column Subqueries

You can write subqueries that return multiple columns. The following example retrieves the order amount with the lowest price, group by agent code.

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

SQL Code:

-- Selecting specific columns from the agents table
SELECT agent_code, agent_name, working_area, commission
-- Filtering agents based on agent_code
FROM agents
-- Filtering agents whose agent_code matches any in the subquery
WHERE agent_code = ANY (
    -- Selecting agent_codes from customer table
    SELECT agent_code 
    -- Filtering customers based on cust_country
    FROM customer
    WHERE cust_country='UK'
);

Explanation:

  • This SQL query retrieves specific columns from the "agents" table.

  • It filters the agents based on the agent_code.

  • The subquery is used to find agent_codes of agents who have customers in the UK.

  • It first selects the agent_codes from the "customer" table.

  • Then it filters these customers based on their cust_country being 'UK'.

  • The main query then selects agents whose agent_code matches any of those found in the subquery, meaning it selects agents who have customers in the UK.

Output:

   ORD_NUM AGENT_CODE ORD_DATE  ORD_AMOUNT
---------- ---------- --------- ----------
    200104 A004       13-MAR-08       1500
    200121 A004       23-SEP-08       1500
    200126 A002       24-JUN-08        500
    200120 A002       20-JUL-08        500
    200123 A002       16-SEP-08        500
    200124 A007       20-JUN-08        500
    200116 A009       13-JUL-08        500
    200105 A011       18-JUL-08       2500
    200130 A011       30-JUL-08       2500
    200131 A012       26-AUG-08        900
    200135 A010       16-SEP-08       2000
    200115 A013       08-FEB-08       2000
    200117 A001       20-OCT-08        800
    200111 A008       10-JUL-08       1000
    200118 A006       20-JUL-08        500
    200103 A005       15-MAY-08       1500
    200100 A003       08-JAN-08       1000

Visual Presentation:

SQL: Multiple Column Subqueries

SQL: Subqueries using DISTINCT

In this section, we are discussing the usage of DISTINCT clause in a subquery.

Example:

Sample table: orders
   ORD_NUM ORD_AMOUNT ADVANCE_AMOUNT ORD_DATE  CUST_CODE       AGENT_CODE      ORD_DESCRIPTION
---------- ---------- -------------- --------- --------------- --------------- -----------------
    200114       3500           2000 15-AUG-08 C00002          A008
    200122       2500            400 16-SEP-08 C00003          A004
    200118        500            100 20-JUL-08 C00023          A006
    200119       4000            700 16-SEP-08 C00007          A010
    200121       1500            600 23-SEP-08 C00008          A004
    200130       2500            400 30-JUL-08 C00025          A011
    200134       4200           1800 25-SEP-08 C00004          A005
    200108       4000            600 15-FEB-08 C00008          A004
    200103       1500            700 15-MAY-08 C00021          A005
    200105       2500            500 18-JUL-08 C00025          A011
    200109       3500            800 30-JUL-08 C00011          A010
    200101       3000           1000 15-JUL-08 C00001          A008
    200111       1000            300 10-JUL-08 C00020          A008
    200104       1500            500 13-MAR-08 C00006          A004
    200106       2500            700 20-APR-08 C00005          A002
    200125       2000            600 10-OCT-08 C00018          A005
    200117        800            200 20-OCT-08 C00014          A001
    200123        500            100 16-SEP-08 C00022          A002
    200120        500            100 20-JUL-08 C00009          A002
    200116        500            100 13-JUL-08 C00010          A009
    200124        500            100 20-JUN-08 C00017          A007
    200126        500            100 24-JUN-08 C00022          A002
    200129       2500            500 20-JUL-08 C00024          A006
    200127       2500            400 20-JUL-08 C00015          A003
    200128       3500           1500 20-JUL-08 C00009          A002
    200135       2000            800 16-SEP-08 C00007          A010
    200131        900            150 26-AUG-08 C00012          A012
    200133       1200            400 29-JUN-08 C00009          A002
    200100       1000            600 08-JAN-08 C00015          A003
    200110       3000            500 15-APR-08 C00019          A010
    200107       4500            900 30-AUG-08 C00007          A010
    200112       2000            400 30-MAY-08 C00016          A007
    200113       4000            600 10-JUN-08 C00022          A002
    200102       2000            300 25-MAY-08 C00012          A012

To get 'ord_num', 'ord_amount', 'ord_date', 'cust_code' and 'agent_code' from the table 'orders' with following conditions -

in outer query:

the 'agent_code' of 'orders' table must be the same 'agent_code' of 'orders' table with following conditions -
 'agent_code' of 'orders' table should come distinctly with following

inner query:
;the 'cust_code' of 'orders' table must be 'C00005'

Here is the complete SQL statement :

SQL Code:

-- Selecting specific columns from the orders table
SELECT ord_num, ord_amount, ord_date,
       cust_code, agent_code
-- Filtering orders based on agent_code
FROM orders
-- Filtering orders where the agent_code matches a subquery result
WHERE agent_code = (
    -- Selecting distinct agent_code from orders table
    SELECT DISTINCT agent_code
    -- Filtering orders based on cust_code
    FROM orders
    WHERE cust_code='C00005'
);

Explanation:

  • This SQL query retrieves specific columns from the "orders" table.

  • It filters the orders based on the agent_code.

  • The subquery selects distinct agent_codes from the "orders" table.

  • It filters these agent_codes based on the cust_code being 'C00005'.

  • The main query then selects orders where the agent_code matches the result of the subquery, meaning it selects orders handled by the agent(s) who have customers with the cust_code 'C00005'.

Output:

   ORD_NUM ORD_AMOUNT ORD_DATE  CUST_CODE  AGENT_CODE
---------- ---------- --------- ---------- ----------
    200106       2500 20-APR-08 C00005     A002
    200123        500 16-SEP-08 C00022     A002
    200120        500 20-JUL-08 C00009     A002
    200126        500 24-JUN-08 C00022     A002
    200128       3500 20-JUL-08 C00009     A002
    200133       1200 29-JUN-08 C00009     A002
    200113       4000 10-JUN-08 C00022     A002

The inner of the above query returns the 'agent_code' A002.

The simplified form of above code is :

SQL Code:

-- Selecting specific columns from the orders table
SELECT ord_num, ord_amount, ord_date,
       cust_code, agent_code
-- Filtering orders based on agent_code
FROM orders
-- Specifying the condition for filtering
WHERE agent_code = 'A002';

Explanation:

  • This SQL query retrieves specific columns from the "orders" table.

  • It filters the orders based on the agent_code.

  • The condition specified in the WHERE clause restricts the results to only those orders where the agent_code is 'A002', meaning it selects orders handled by the agent with the code 'A002'.

Relational Algebra Expression:

Relational Algebra Expression: SQL: Subqueries using DISTINCT.

Relational Algebra Tree:

Relational Algebra Tree: SQL: Subqueries using DISTINCT.

Visual Presentation:

SQL: Subqueries using DISTINCT

See our Model Database

Check out our 1000+ SQL Exercises with solution and explanation to improve your skills.

Previous: Single Row Subqueries
Next: Correlated subqueries using aliases



Follow us on Facebook and Twitter for latest update.