w3resource

Pandas Series property: values

Series as ndarray or ndarray-like in Pandas

The series-values property is used to get Series as ndarray or ndarray-like depending on the dtype.

Syntax:

Series.values
Pandas Series value property.

Returns: numpy.ndarray or ndarray-like

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd 
pd.Series([3, 4, 5]).values
array([3, 4, 5], dtype=int64)
pd.Series(list('xxyz')).values

Output:

array(['x', 'x', 'y', 'z'], dtype=object)
Pandas Series value property.

Python-Pandas Code:

import numpy as np
import pandas as pd 
pd.Series([3, 4, 5]).values
pd.Series(list('xxyz')).astype('category').values

Output:

[x, x, y, z]
Categories (3, object): [x, y, z]
Pandas Series value property.

Example - Timezone aware datetime data is converted to UTC:

Python-Pandas Code:

import numpy as np
import pandas as pd 
pd.Series([3, 4, 5]).values
pd.Series(pd.date_range('20190402', periods=4,
                         tz='US/Eastern')).values

Output:

array(['2019-04-02T04:00:00.000000000', '2019-04-03T04:00:00.000000000',
       '2019-04-04T04:00:00.000000000', '2019-04-05T04:00:00.000000000'],
      dtype='datetime64[ns]')
Pandas Series value property.

Previous: An ExtensionArray in Pandas
Next: Memory usage of Pandas Series



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/pandas/series/series-values.php