Pandas Series property: values
Series as ndarray or ndarray-like in Pandas
The series-values property is used to get Series as ndarray or ndarray-like depending on the dtype.
Syntax:
Series.values
Returns: numpy.ndarray or ndarray-like
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([3, 4, 5]).values
array([3, 4, 5], dtype=int64)
pd.Series(list('xxyz')).values
Output:
array(['x', 'x', 'y', 'z'], dtype=object)
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([3, 4, 5]).values
pd.Series(list('xxyz')).astype('category').values
Output:
[x, x, y, z] Categories (3, object): [x, y, z]
Example - Timezone aware datetime data is converted to UTC:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([3, 4, 5]).values
pd.Series(pd.date_range('20190402', periods=4,
tz='US/Eastern')).values
Output:
array(['2019-04-02T04:00:00.000000000', '2019-04-03T04:00:00.000000000', '2019-04-04T04:00:00.000000000', '2019-04-05T04:00:00.000000000'], dtype='datetime64[ns]')
Previous: An ExtensionArray in Pandas
Next: Memory usage of Pandas Series
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics