Pandas Series property: array
An ExtensionArray in Pandas
The ExtensionArray of the data backing Pandas Series or Index.
Syntax:
Series.array
Returns: ExtensionArray - An ExtensionArray of the values stored within.
For extension types, this is the actual array.
For NumPy native types, this is a thin (no copy) wrapper around numpy.ndarray.
Following table lays out the different array types for each extension dtype within pandas.
dtype | array type |
---|---|
category | Categorical |
period | PeriodArray |
interval | IntervalArray |
IntegerNA | IntegerArray |
datetime64[ns, tz] | DatetimeArray |
For any 3rd-party extension types, the array type will be an ExtensionArray.
For all remaining dtypes .array will be a arrays.NumpyExtensionArray wrapping the actual ndarray stored within. If you absolutely need a NumPy array (possibly with copying / coercing data), then use Series.to_numpy() instead.
Example:
For regular NumPy types like int, and float, a PandasArray is returned.
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series([2, 3, 4]).array
Output:
<PandasArray> [2, 3, 4] Length: 3, dtype: int64
Example - For extension types, like Categorical, the actual ExtensionArray is returned:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(pd.Categorical(['x', 'y', 'x']))
s.array
Output:
[x, y, x] Categories (2, object): [x, y]
Previous: Series
Next: Series as ndarray or ndarray-like in Pandas
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics