Pandas Series: str.startswith() function
Series-str.startswith() function
The str.startswith() function is used to test if the start of each string element matches a pattern.
The function is equivalent to str.startswith().
Syntax:
Series.str.startswith(self, pat, na=nan)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
pat | Character sequence. Regular expressions are not accepted. | str | Required |
na | Object shown if element tested is not a string. | object, default NaN | Required |
Returns: Series or Index of bool
A Series of booleans indicating whether the given pattern matches the start of each string element.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['dog', 'Deer', 'fox', np.nan])
s
Output:
0 dog 1 Deer 2 fox 3 NaN dtype: object
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['dog', 'Deer', 'fox', np.nan])
s.str.startswith('d')
Output:
0 True 1 False 2 False 3 NaN dtype: object
Example - Specifying na to be False instead of NaN:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series(['dog', 'Deer', 'fox', np.nan])
s.str.startswith('d', na=False)
Output:
0 True 1 False 2 False 3 False dtype: bool
Previous: Series-str.rsplit() function
Next: Series-str.strip() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics