Pandas Series: - str.replace() function
Series-str.replace() function
The str.replace() function is used to replace occurrences of pattern/regex in the Series/Index with some other string.
Syntax:
Series.str.replace(self, pat, repl, n=-1, case=None, flags=0, regex=True)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
pat | String can be a character sequence or regular expression. New in version 0.20.0: pat also accepts a compiled regex. |
str or compiled regex | Required |
repl | Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. New in version 0.20.0: repl also accepts a callable. |
str or callable | Required |
n | Number of replacements to make from start. | bool Default Value: -1 (all) |
Required |
case |
|
int Default Value: None |
Required |
flags |
|
int Default Value: 0 (no flags) |
Required |
regex |
|
bool Default Value: True |
Required |
Returns: Series or Index of object
A copy of the object with all matching occurrences of pat replaced by repl.
- if regex is False and repl is a callable or pat is a compiled regex
- if pat is a compiled regex and case or flags is set
Notes:
When pat is a compiled regex, all flags should be included in the compiled regex. Use of case, flags, or regex=False with a compiled regex will raise an error.
Example - When pat is a string and regex is True (the default), the given pat is compiled as a regex. When repl is a string, it replaces matching regex patterns as with re.sub(). NaN value(s) in the Series are left as is:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series(['full', 'fog', np.nan]).str.replace('f.', 'bu', regex=True)
Output:
0 bull 1 bug 2 NaN dtype: object
Example - When pat is a string and regex is False, every pat is replaced with repl as with str.replace():
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series(['f.n', 'fog', np.nan]).str.replace('f.', 'bu', regex=False)
Output:
0 bun 1 fog 2 NaN dtype: object
Example - When repl is a callable, it is called on every pat using re.sub(). The callable should expect one positional argument (a regex object) and return a string:
To get the idea:
Python-Pandas Code:
import numpy as np
import pandas as pd
pd.Series(['full', 'fog', np.nan]).str.replace('f', repr)
Output:
0 <re.Match object; span=(0, 1), match='f'>ull 1 <re.Match object; span=(0, 1), match='f'>og 2 NaN dtype: object
Example - Reverse every lowercase alphabetic word:
Python-Pandas Code:
import numpy as np
import pandas as pd
repl = lambda m: m.group(0)[::-1]
pd.Series(['full 234', 'brr bzz', np.nan]).str.replace(r'[a-z]+', repl)
Output:
0 lluf 234 1 rrb zzb 2 NaN dtype: object
Example - Using regex groups (extract second group and swap case):
Python-Pandas Code:
import numpy as np
import pandas as pd
pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
repl = lambda m: m.group('two').swapcase()
pd.Series(['One Two Three', 'Full Brr Bzz']).str.replace(pat, repl)
Output:
0 tWO 1 bRR dtype: object
Example - Using regex groups (extract second group and swap case):
Python-Pandas Code:
import numpy as np
import pandas as pd
import re
regex_pat = re.compile(r'FOG', flags=re.IGNORECASE)
pd.Series(['full', 'fog', np.nan]).str.replace(regex_pat, 'brr')
Output:
0 full 1 brr 2 NaN dtype: object
Previous: Series-str.repeat() function
Next: Series-str.rpartition() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics