Pandas Series: sparse.to_coo() function
Series-sparse.to_coo() function
The sparse.to_coo() function is used to create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.
Syntax:
sparse.to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
row_levels | Python tuple, Python list | tuple/list | Required |
column_levels | Python tuple, Python list | tuple/list | Required |
sort_labels | Sort the row and column labels before forming the sparse matrix. | bool, default False | Required |
Returns: y : scipy.sparse.coo_matrix
rows : list (row labels)
columns : list (column labels)
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([4.0, np.nan, 3.0, 4.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples([(2, 3, 'p', 0),
(2, 3, 'p', 1),
(2, 2, 'q', 0),
(2, 2, 'q', 1),
(3, 2, 'q', 0),
(3, 2, 'q', 1)],
names=['P', 'Q', 'R', 'S'])
ss = s.to_sparse()
P, rows, columns = ss.to_coo(row_levels=['P', 'Q'],
column_levels=['R', 'S'],
sort_labels=True)
P
Output:
<3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format>
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([4.0, np.nan, 3.0, 4.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples([(2, 3, 'p', 0),
(2, 3, 'p', 1),
(2, 2, 'q', 0),
(2, 2, 'q', 1),
(3, 2, 'q', 0),
(3, 2, 'q', 1)],
names=['P', 'Q', 'R', 'S'])
ss = s.to_sparse()
P, rows, columns = ss.to_coo(row_levels=['P', 'Q'],
column_levels=['R', 'S'],
sort_labels=True)
P.todense()
Output:
matrix([[0., 0., 3., 4.], [4., 0., 0., 0.], [0., 0., 0., 0.]])
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([4.0, np.nan, 3.0, 4.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples([(2, 3, 'p', 0),
(2, 3, 'p', 1),
(2, 2, 'q', 0),
(2, 2, 'q', 1),
(3, 2, 'q', 0),
(3, 2, 'q', 1)],
names=['P', 'Q', 'R', 'S'])
ss = s.to_sparse()
P, rows, columns = ss.to_coo(row_levels=['P', 'Q'],
column_levels=['R', 'S'],
sort_labels=True)
rows
Output:
[(2, 2), (2, 3), (3, 2)]
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([4.0, np.nan, 3.0, 4.0, np.nan, np.nan])
s.index = pd.MultiIndex.from_tuples([(2, 3, 'p', 0),
(2, 3, 'p', 1),
(2, 2, 'q', 0),
(2, 2, 'q', 1),
(3, 2, 'q', 0),
(3, 2, 'q', 1)],
names=['P', 'Q', 'R', 'S'])
ss = s.to_sparse()
P, rows, columns = ss.to_coo(row_levels=['P', 'Q'],
column_levels=['R', 'S'],
sort_labels=True)
columns
Output:
[('p', 0), ('p', 1), ('q', 0), ('q', 1)]
Previous: Series-sparse.from_coo() function
Next: Python pandas tutorials
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics