w3resource

Pandas Series: sparse.from_coo() function

Series-sparse.from_coo() function

The from_coo() function is used to create a SparseSeries from a scipy.sparse.coo_matrix.

Syntax:

classmethod sparse.from_coo(A, dense_index=False)
Pandas Series: sparse.from_coo() function

Parameters:

Name Description Type/Default Value Required / Optional
dense_index If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix. bool, default False Required

Returns: s : SparseSeries

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
                       shape=(3, 4))
X

Output:

<3x4 sparse matrix of type '<class 'numpy.float64'>'
	with 3 stored elements in COOrdinate format>

Python-Pandas Code:

import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
                       shape=(3, 4))
X.todense()

Output:

matrix([[0., 0., 2., 0.],
        [4., 0., 0., 3.],
        [0., 0., 0., 0.]])
Pandas Series: sparse.from_coo() function

Python-Pandas Code:

import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
                       shape=(3, 4))
ss = pd.SparseSeries.from_coo(X)
ss

Output:

0  2    2.0
1  0    4.0
   3    3.0
dtype: Sparse[float64, nan]
BlockIndex
Block locations: array([0])
Block lengths: array([3])

Previous: Series-sparse.sp_values() function
Next: Series-sparse.to_coo() function



Follow us on Facebook and Twitter for latest update.