Pandas Series: sparse.from_coo() function
Series-sparse.from_coo() function
The from_coo() function is used to create a SparseSeries from a scipy.sparse.coo_matrix.
Syntax:
classmethod sparse.from_coo(A, dense_index=False)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
dense_index | If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix. | bool, default False | Required |
Returns: s : SparseSeries
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
shape=(3, 4))
X
Output:
<3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format>
Python-Pandas Code:
import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
shape=(3, 4))
X.todense()
Output:
matrix([[0., 0., 2., 0.], [4., 0., 0., 3.], [0., 0., 0., 0.]])
Python-Pandas Code:
import numpy as np
import pandas as pd
from scipy import sparse
X = sparse.coo_matrix(([4.0, 2.0, 3.0], ([1, 0, 1], [0, 2, 3])),
shape=(3, 4))
ss = pd.SparseSeries.from_coo(X)
ss
Output:
0 2 2.0 1 0 4.0 3 3.0 dtype: Sparse[float64, nan] BlockIndex Block locations: array([0]) Block lengths: array([3])
Previous: Series-sparse.sp_values() function
Next: Series-sparse.to_coo() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics