Pandas Series: notna() function
Detect existing values in Pandas series
The notna() function is used to detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.
Syntax:
Series.notna(self)
Returns: Series- Mask of bool values for each element in Series that indicates whether an element is not an NA value.
Example - Show which entries in a DataFrame are not NA:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'age': [6, 7, np.NaN],
'born': [pd.NaT, pd.Timestamp('1998-04-25'),
pd.Timestamp('1940-05-27')],
'name': ['Alfred', 'Spiderman', ''],
'toy': [None, 'Spidertoy', 'Joker']})
df
Output:
age born name toy 0 6.0 NaT Alfred None 1 7.0 1998-04-25 Spiderman Spidertoy 2 NaN 1940-05-27 Joker
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'age': [6, 7, np.NaN],
'born': [pd.NaT, pd.Timestamp('1998-04-25'),
pd.Timestamp('1940-05-27')],
'name': ['Alfred', 'Spiderman', ''],
'toy': [None, 'Spidertoy', 'Joker']})
df.notna()
Output:
age born name toy 0 True False True False 1 True True True True 2 False True True True
Example - Show which entries in a Series are not NA:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([6, 7, np.NaN])
s
Output:
0 6.0 1 7.0 2 NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([6, 7, np.NaN])
s.notna()
Output:
0 True 1 True 2 False dtype: bool
Previous: Detect missing values in the given Pandas series
Next: Analyze and drop Rows/Columns with Null values in a Pandas series
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://w3resource.com/pandas/series/series-notna.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics