Pandas Series: isna() function
Detect missing values in the given Pandas series
The isna() function is used to detect missing values.
Syntax:
Series.isna(self)
Returns: Series- Mask of bool values for each element in Series that indicates whether an element is not an NA value.
Example - Show which entries in a DataFrame are NA:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'age': [6, 7, np.NaN],
'born': [pd.NaT, pd.Timestamp('1998-04-25'),
pd.Timestamp('1940-05-27')],
'name': ['Alfred', 'Spiderman', ''],
'toy': [None, 'Spidertoy', 'Joker']})
df
Output:
age born name toy 0 6.0 NaT Alfred None 1 7.0 1998-04-25 Spiderman Spidertoy 2 NaN 1940-05-27 Joker
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'age': [6, 7, np.NaN],
'born': [pd.NaT, pd.Timestamp('1998-04-25'),
pd.Timestamp('1940-05-27')],
'name': ['Alfred', 'Spiderman', ''],
'toy': [None, 'Spidertoy', 'Joker']})
df.isna()
Output:
age born name toy 0 False True False True 1 False False False False 2 True False False False
Example - Show which entries in a Series are NA:
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([6, 7, np.NaN])
s
Output:
0 6.0 1 7.0 2 NaN dtype: float64
Python-Pandas Code:
import numpy as np
import pandas as pd
s = pd.Series([6, 7, np.NaN])
s.isna()
Output:
0 False 1 False 2 True dtype: bool
Previous: Subset rows or columns of Pandas dataframe
Next: Detect existing values in Pandas series
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics