Pandas Series: groupby() function
Splitting the object in Pandas
The groupby() function involves some combination of splitting the object, applying a function, and combining the results.
This can be used to group large amounts of data and compute operations on these groups
Syntax:
Series.groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
by | Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted as a (single) key. | mapping, function, label, or list of labels | Required |
seriesaxis | Split along rows (0) or columns (1). | {0 or ‘index’, 1 or ‘columns’} Default Value : 0 |
Required |
level | If the axis is a MultiIndex (hierarchical), group by a particular level or levels. | int, level name, or sequence of such Default Value : None |
Required |
as_index | For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output. | bool Default Value : True |
Required |
sort | Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. | bool Default Value : True |
Required |
group_keys | When calling apply, add group keys to index to identify pieces. | bool Default Value : True |
Required |
squeeze | Reduce the dimensionality of the return type if possible, otherwise return a consistent type. | bool Default Value : False |
Required |
observed | This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. | bool Default Value : False |
Required |
**kwargs | Only accepts keyword argument ‘mutated’ and is passed to groupby. | Optional |
Returns: DataFrameGroupBy or SeriesGroupBy
Depends on the calling object and returns groupby object that contains information about the groups.
Example:
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'Animal': ['Tiger', 'Tiger',
'Dog', 'Dog'],
'Max Speed': [270., 260., 36., 32.]})
df
Output:
Animal Max Speed 0 Tiger 270.0 1 Tiger 260.0 2 Dog 36.0 3 Dog 32.0
Python-Pandas Code:
import numpy as np
import pandas as pd
df = pd.DataFrame({'Animal': ['Tiger', 'Tiger',
'Dog', 'Dog'],
'Max Speed': [270., 260., 36., 32.]})
df.groupby(['Animal']).mean()
Output:
Max Speed Animal Dog 34.0 Tiger 265.0
Example - Hierarchical Indexes:
We can groupby different levels of a hierarchical index using the level parameter:
Python-Pandas Code:
import numpy as np
import pandas as pd
arrays = [['Tiger', 'Tiger', 'Dog', 'Dog'],
['Captive', 'Wild', 'Captive', 'Wild']]
index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
df = pd.DataFrame({'Max Speed': [280., 250., 30., 20.]},
index=index)
df
Output:
Max Speed Animal Type Tiger Captive 280.0 Wild 250.0 Dog Captive 30.0 Wild 20.0
Python-Pandas Code:
import numpy as np
import pandas as pd
arrays = [['Tiger', 'Tiger', 'Dog', 'Dog'],
['Captive', 'Wild', 'Captive', 'Wild']]
index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
df = pd.DataFrame({'Max Speed': [280., 250., 30., 20.]},
index=index)
df.groupby(level=0).mean()
Output:
Max Speed Animal Dog 25.0 Tiger 265.0
Python-Pandas Code:
import numpy as np
import pandas as pd
arrays = [['Tiger', 'Tiger', 'Dog', 'Dog'],
['Captive', 'Wild', 'Captive', 'Wild']]
index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type'))
df = pd.DataFrame({'Max Speed': [280., 250., 30., 20.]},
index=index)
df.groupby(level=1).mean()
Output:
Max Speed Type Captive 155.0 Wild 135.0
Previous: Map values of Pandas Series
Next: Rolling window calculations in Pandas
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics