w3resource

Pandas Series: agg() function

Aggregation in Pandas

The agg() function uses one or more operations over the specified axis.

Syntax:

Series.agg(self, func, axis=0, *args, **kwargs)
Pandas Series agg image

Parameters:

Name Description Type/Default Value Required / Optional
func Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply.
Accepted combinations are:
  • function
  • string function name
  • list of functions and/or function names, e.g. [np.sum, 'mean']
  • dict of axis labels -> functions, function names or list of such.
unction, str, list or dict Required
axis Parameter needed for compatibility with DataFrame. {0 or ‘index’} Required
args Positional arguments to pass to func. Required
**kwds Keyword arguments to pass to func.   Required

Returns: scalar, Series or DataFrame
The return can be:

  • scalar : when Series.agg is called with single function
  • Series : when DataFrame.agg is called with a single function
  • DataFrame : when DataFrame.agg is called with several functions

Return scalar, Series or DataFrame.

Notes: agg is an alias for aggregate. Use the alias.
A passed user-defined-function will be passed a Series for evaluation.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8])
s

Output:

0    2
1    4
2    6
3    8
dtype: int64

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8])
s.agg('min')

Output:

2

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series([2, 4, 6, 8])
s.agg('min')
s.agg(['min', 'max'])

Output:

min    2
max    8
dtype: int64

Previous: Invoke a python function on values of Pandas series
Next: Aggregation with pandas series



Follow us on Facebook and Twitter for latest update.