w3resource

Pandas: Data Manipulation - get_dummies() function

get_dummies() function

The get_dummies() function is used to convert categorical variable into dummy/indicator variables.

Syntax:

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

Parameters:

Name Description Type Default Value Required / Optional
data Data of which to get dummy indicators. array-like, Series, or DataFrame   Required
prefix String to append DataFrame column names. str, list of str, or dict of str Default: None Optional
prefix_sep If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with prefix. str Default: ‘_’ Optional
dummy_na Add a column to indicate NaNs, if False NaNs are ignored. bool Default: False Optional
columns Column names in the DataFrame to be encoded. If columns is None then all the columns with object or category dtype will be converted. list-like Default: None Optional
sparse Whether the dummy-encoded columns should be backed by a SparseArray (True) or a regular NumPy array (False) bool Default: False Optional
drop_first Whether to get k-1 dummies out of k categorical levels by removing the first level. bool Default: False Optional
dtype Data type for new columns. Only a single dtype is allowed. dtype Default: np.uint8 Optional

Returns: DataFrame - Dummy-coded data.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: concat() function
Next: factorize() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://w3resource.com/pandas/get_dummies.php