w3resource

Pandas: Data Manipulation - crosstab() function

crosstab() function

The crosstab() function is used to compute a simple cross tabulation of two (or more) factors.

By default computes a frequency table of the factors unless an array of values and an aggregation function are passed.

Syntax:

pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name='All', dropna=True, normalize=False)

Parameters:

Name Description Type Default Required / Optional
index Values to group by in the rows. array-like, Series, or list of arrays/Series   Required
columns Values to group by in the columns. array-like, Series, or list of arrays/Series   Required
values Array of values to aggregate according to the factors. array-like   Optional
rownames If passed, must match number of row arrays passed. sequence Default: None Optional
colnames If passed, must match number of column arrays passed. sequence Default: None Optional
aggfunc If specified, requires values be specified as well. function   Optional
margins Add row/column margins (subtotals). bool Default: False Optional
margins_name Name of the row/column that will contain the totals when margins is True. str Default: ‘All’ Optional
dropna Do not include columns whose entries are all NaN boolean Default: True Optional
normalize Normalize by dividing all values by the sum of values.
  • If passed ‘all’ or True, will normalize over all values.
  • If passed ‘index’ will normalize over each row.
  • If passed ‘columns’ will normalize over each column.
  • If margins is True, will also normalize margin values.
bool, {‘all’, ‘index’, ‘columns’}, or {0,1} Default: False Optional

Returns: Cross tabulation of the data.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: pivot_table() function
Next: cut() function



Follow us on Facebook and Twitter for latest update.