Pandas DataFrame: update() function
DataFrame - update() function
The update() function is used to modify in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Syntax:
DataFrame.update(self, other, join='left', overwrite=True, filter_func=None, errors='ignore')
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
other | Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. | DataFrame, or object coercible into a DataFrame | Required |
join | Only left join is implemented, keeping the index and columns of the original object. |
{'left'} Default Value: 'left' |
Required |
overwrite | How to handle non-NA values for overlapping keys:
|
bool Default Value: True |
Required |
filter_func | Can choose to replace values other than NA. Return True for values that should be updated. | callable(1d-array) -> bool 1d-array | Optional |
errors | If 'raise', will raise a ValueError if the DataFrame and other both contain non-NA data in the same place. Changed in version 0.24.0: Changed from raise_conflict=False|True to errors='ignore'|'raise'.. |
{'raise', 'ignore'} Default Value: 'ignore' |
Required |
Returns: None - method directly changes calling object
Raises: ValueError- When errors='raise' and there's overlapping non-NA data.
- When errors is not either 'ignore' or 'raise'
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - merge() function
Next: DataFrame - asfreq() function
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics